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PREFACE

This book contains the Proceedings of the Fourth Conference on the Numerical Simu-
lation of Plasmas held at the Naval Research Laboratory, Washington, D.C. on the
2nd and 3rd of November 1970. The conferences on the Numerical Simu'aiion of Plasmas
were used in the past to disseminate progress in the state-of-the-art of plasma simula-
tion and specific applications of computer experiments to plasma physics. The first
conference was kheld in 1967 at the Collzge of William and Mary; the second was held
in 1968 at the Los Alamos Scientific Laboracory and the third at Stanford University
in 1969. At the time of the Fourth Conference, the field reached a highly sophisticated
degree of maturity and won the acceptance of the general Plasma Physics Community.
The number of presentations reiated to plasma simulation at APS Meetings of the Plasma
Physics Division has been exponential since 1963. Eight percent of the total papers
presented at the 1970 APS Meeting were in the field of numerical simulation. Most of
these papers were oriented toward the application of numerical methods to the solution
and understanding of physical phenomena. Therefore, the decision was taken at the
Third Simulation Conference at Stanford to restrict the papers presented at the Fourth
Conference to numerical techniques rather than the application of such techniques to
plasma physics. It was further decided that the papers should be more comprehensive
even though this would reduce the number of papers which could be presented orally
at a two-day conference. The selection of papers for oral presentation at the Conference
was based on the detailed, #xtended abstracts submiited by the authors. These extended
abstracts provided the basis for evaluating proposed presentations in light of the two
objectives of the Conference. The ultimate objective of the Conference was to present
the state-of-the-art to which plasma simulation has evolved. An auxiliary goal was to
make available to the general community a set of proceedings encompassing all aspects
of the field and providing the researcher with a working reference and the graduate student
with guidelines in this area of research.

The Conference was comprised of four sessions. The first sessicn was composed of
ardvanced numerical models and programming methods for computer representation of
plasmas. The second session, designated computational sciences, was comprised en-
tirely of invited papers which dealt with numerical techniques in fields other than plasma
physics. The third session dealt with numerical methods for the solution of plasma models
other than particle simulation. The fourth session included the theory of particle simula-
tion as well as detailed optimization techniques.

It is felt that this Proceedings provides a reasonably complete and detailed exposi-
tion of the current state of numerical plasma simulation and will be useful to both the
novice in the field and the professional.

We wish to extend our thank. to the authors and participants who made the 1970
Conference a success. We are grateful to Professors C. K. Birdsall and . M. Dawsen
for their assistance in selecting the format of the Conference. We wouid like to acknowl-
edge the help and assistance provided by the Management of the Naval Research Lab-
oratory in the hosting of this Corference, anJ especially, the superb efforts of the Tech-
nical Information Division in the preparation of these Proceedings. In addition, we would
like to acknowledge the help and assistance of Mrs. Tena M. Mason and Mrs. Melba
0. Doorosky in organizing the Conference without which the Conference could not
have been held, as well as their efforts in prodding the editors in the preparation of manu-
scripts.

Jay P. Bonis, EpiTOR
July 19, 1971 RaMy A SHANNY, EDITOR
Naval Research Laboratory
Washington, D. C.
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Relativistic Plasma Simulgtion - Optimization
of a Hybrnid Code

3. P. Bons
Naval Research L.thoratory
Washington, D.C.

I. INTRODUCTION

This paper contains the description of a plasma-simulation program.
CYLRAD, for two-dimensional systems ¢f charged, fully relativistic particies
with fully retarded, self-consistent clectric and magnetic fields. The geouxiry
of the basic physical system is r-z cylindrical, so tne elemental charges are
azimuthally symmetri- rings, but the methods generalize to other geometries
and to three dimensions quite easily. Two and three dimensional calculations
on such e complete plasma model would havc bLesen rather impracticel on the small,
slow computers of previous generations; therefore, only recently has the pro-
blem of finding efficient, accurate, numerical models for solving this problem
been much more than an academic exercise. The larger and faster machines

presently available make these calculations possible today, however, and the

Proceding page hiank
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soaring costs of high-technology plasme experiments make them necessary. Thus,
the author Lopes that CYLRAD will be of interest.

Many important problems in astrophyxics, plasma physics, high energy
accelerator physics and electronics can be approached camputationally by
following the orbits of a great number of representative simulation particles
under the interactions of their self'-consistent slectrostatic and electromagnetic
forzes. These self-consistent fields are often augmented in real problems by
additional forces caused by charges and currents which are external to the
domain of interest. Electrostatic calculations in plasms codes with time

indepenuent applied electric and megnetic fields have been used,]"&"5

for example,
to study electrostatic streaming instabilities and magnetic contaimment problems.
It bas long been realized that self-consistent magnetic fields would have to be
calculated, as well as the electrostatic fields, to have an adequate description
of many important plasma physics problems. Although the self-consistent electro-
static forces dominate in some non-charge-neutral systems, there exist many regimes
where self-consistent electromagnetic effects cannot be igre-::d.
Two rather different circumstances can occur in pisspa problems which
are essentially charge neutral. In one class of problcus fairly large, approxi-
rately divergence-free currents are present; the magnetic fields and induction
el ctric fields which arice can then be camparable to or larger than the residual
electrostatic fields caused by deviations fram charge neuirality in the p.l.asma.k’5
In another class of charge-neutral problems there need be no large plasma
currents and yet electramagnetic effects contribute significantly to the plasma
behavior, for example, through radiation effects or anisotropy instabilitiesié”{ 8
In many cases the approach of non-equilibrium plasma to thermal equilibrium is
determinc . predominantly by relatively weak electromagnetic effects rather than

the strouger electrostatic phenomena simply because non-equilibrium plasmas,
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which are electrostatically stable, are often unstable to one of the electro-
magnetic modes. Problems of these two types are often those in which induction
electric fields are important but where the transverse displacement current ‘s
not the dominating term in Ampere's law. This induction model, where the magnetic
vector potential satisfies the Zoiscon Equation, ¥#A = ?- d , is usually cslled
Darvin's node1.9 Electromagnetic radiation is not present but the induction
electric field is retained so that low-frequency electromagnetic plasma phenamena
such as Alfven waves will be properly described.m’n

In a third class of problems, the particles are fully relativistic. The
magnetic and electric energies are then comparable, even in non-charge-neutral
systems, In this class of problems the self-consistent electromagnetic radiation
can also be important. Although there are many problems where the particles are
relativistic but where radiation can be neglected, and many problems where radia-
tion interactions are important but where the particles are non-relativisti-~,
the usefulness of a plasma simulation program which handles both relativistic
particle effects and a fully time-dependent electramsgnetic field is assured.
Intended applications 2o» CYLRAD are relativistic-electron-beam generation and
propagation, electron-ring-accelerstor design, transmission line transformer
design, and basic plasma studies.

In CYLRAD all three camponents of the electric field and all three

components of the magneti: field are advanced forward in time from the evolvant
Maxwell Equations,

%E

&:'chg-h"i, (1a)

o

Ft-'.c'v-x's-’ ()
5




Boris

using a fully reversible algorithm which easures that the consti.utive Maxwell

Equaticns,

I

*E *®h4np, and (28)
Yy B =0, (2b)

are satisfied to computer round-off accuracy at each timestep. Here E and B
are the vector electric and magnetic fields respectively, J and p are the
current and charge densities, and ¢ is the velocity of light. Azimuthal symm.try
gives simple conditions on E, B, J and p at the axis and perfectly-conducting
metallic boundary conditions are presently being applied at a finite radius
R @ (NR + 5) *6r to give a tractable, bounded s;-tem. The system is periodic
in the Z direction with a replication length of Z = NZ*6Z.

The relativistic Newton Equation for each particle using the Lorent:

force in the laboratory frame of reference,

P\
+
o¢

218
[ ]
El e

XB (53)

=]

completes the specification of the system. Here q and m; are the particle

charge and rest mass and the velocity V is related to P, by
b il 30 B (3b)

Notice that the rest mass hus been extracted from the definition of P. An
accurate, reversible single-pass rz2thod Tor integrating thesa particle equatiouns
is presented which gives the correct parcicle orbits in the simple limits. This
algorithm tekes special account of the cylindrical geumetry ¢0 that orbits passing

through the axis can be integrated without loss of accuracy.

WA 2 st
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The algorithm described here is more flexible than those given pre-

vious]ylz’h’6

and reduces to previous algorithms in special cases. This algoritlm
retains the advantageous property of being fully reversible while decoupling the
prescriptions for current and charge-density apportionment, Thus, an electro-
static caleu/stion can be recovered by setting c and J to zero in Egs. (1la-1b)
and various charge and current algorithms can be tested to optimize the playoff
between accuracy and running-speed. The method is computationally fast because
expensive divergence-conservative cv.rrent12’6 algorithms can be bypassed., Further,
several timesteps of the electromagnetic field quantities can be performed, for
each particle timestep, without destroying the reversibility of the algorithm.
Thus, particle pushing, which is at best an expensive process, need only be done
once every few timesteps when the particles satisfy Vth << ¢ and wpe << ¢/bx.

In this paper the main emphasis has been placed on numerical techniques
with the aim of showing how the various aspects of program optimization can be
balanced in constructing a fairly general plasma simulation code. The CYLRAD
Jsrogram falls into the category of a hybrid code, one which contains features of
voth fluid and particle calculations. In CYLRAD the partial differential Maxwell
Equations are solved by finite difference techniques while the particle equations
of motion are integrated using techniques specially devised for performing fast
perticle trajeciory calculations,

The discussion of the methods breaks similarly into two parts, the
solution of the Maxwell Equations with arbitrary sources J and p, and the integra-
tion of the particle equations of motion with arbitrary forcing fields. 1In
Section II, the details of the Maxwell-Equation integration are given and analyzed.
Appendices A, B, and C discuss important cide issues related to solving the
Maxwell Equations, Poisson-solver programs are discussed briefly in Appendix A.
In Appendix B, generalizations to other geometries, t¢ three-dimensions, and to

implicit difference schemes are considered. Anpendix C generalizes the discussion

Y B e
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to cover the case where the dielectric constant of the medium €(z,r), is not
constant and where the boundary conditions are camplicated. Section III describes
the details of the fully reversible particle integration. Section IV contains a
discussion of merging thece two major parts of the code. A method is presented
for integrating the particles over a much longer timestep than is possible for
the electromagnetic fields while keeping the overall algorithm fully time rever-
sible. Section V describes of a few simple test calculations performed to test

the code and to point out the various computational properties of the method.
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II. SOLUTION OF THE MAXWELL EQUATIONS WITH ARBITRARY SOURCES

In this section the particular staggered-leapfrog integration of the Maxwell
Equations (1a-2b) used in CYIRAD is described in detail assuming that the charge
density p (r,z,t) and the three components of the current J (r,z,t) are arbitrary
but given functions. These sources need not satisfy the charge-conservation
condition, Eq. (4), exactly. The CYLRAD algcrithm corrects for any discrepency
between p and J as related by Eq. (4) so we are considering, for the moment, just
a general purpose Maxwell-Equation solver. The alrorithm given here decouples
the charge-and-current-apportionment prescriptions for added efficiency, con-
venience, and flexibility. The discussion concerned with relating these source

terms to the particles is deferred until Section IV.

Professor O. Buneman of Stanford has pointed out the camputational advan-
tages of employing a reversible, fully-causal formulation for the electromagnetic

field equations. 12,15

He argues that the digital computer is basically a causal
device, procezsing information in a determministic way, and one will find com-
putational physics an easier discipline if this is kept in mind. MHe further
argues that reversible algorithms which mirror the reversibility properties of
the classical manybody problem should be used in the numerical calculations.
Whatever other misbehaviors may be present, certain types of instability and
other systematic inaccuracies will be absent. Modern ~omputers are specially
suited to simple, very fast calculations so it is easier and usually more
profitable to use simple, clean, low-order algorithms and a highly refined mesh
rather than complicated high-order schemes and coarser meshes. The former
course conforms more closely to the "mentality" of modern computers than the
latter and considerably shortens the lead time to results. In other words it is
often better to use brute force subtly in camputational physics rather than to
try to be brutsl in the use of subtlety since the essence of high-speed computers

is brute force .2h
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The numerical algorithm suggested by Buneman fcr solving the Maxwell
Equations in three-dimensional Cartesian coordinates automatically ensured the

consistency condition

%%+z-£-o ) .

by carefully choosing a current-accumulation algorithm tc complement the NG-]E’IA’]'E’16
cherge-interpolation algorithm, Professor Buneman further suggested a relatistic
particle~pushing algorithm to ensure that V for the simulation particles could never
exceed c, the velocity of propagation of waves in the Maxwell Equatio's. Although
Buneman realized that this algorithm would be useful for solving problems where
electromagnetic modes interact strongly with plasma, he also pointed out that an
artificially small value of ¢ could be used to bring the various time and length
scales in the plasma closer together for computational convenience. This is much

in the spirit of choosing a 100:1 mass ratio, for instance, in electrostatic

calculations.

A recent applicatian of these ideas6’ has generalized the charge apportion-
ment to bilinear interpolation and specialized the calculation to two dimensions.
The CYLRAD code solves the Msxwell Equations in a 2-D azimuthally symmetric,
perfectly-conducting, metalic cylinder but the basic algorithm is applicaonle
for three dimensions and for other geometries.

A staggered-leapfrog scheme23’39 is used to advance B and E causally in a

fully space- and time-centered way. Figure 1 shows the entire time line for
CYLRAD with the electromegnetic field integration and the particle integration
separated, We are primarily interested in the field integration here, the upper
portion of the figure. The electric and magnetic fields are specified at different
times to ersure time centering and the currents are assumed to be known at the

magnetic field times. The 2lectric field is integrated forward from t = -36t to

10
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CYLRAD TIME INTEGRATION
CENTERED AND REVERSIBLE

Bo B
MAGNETIC
8- B-vz; B 8 8 B
FIELD = 1“! il i R
i ELF.EgIg'cE-s E-2 E4 Eo E Ex E3

THREE RADIATION
TIME STEPS PER
PARTICLE STEP

) J——
[ ]

i
]
i
!
]
|
|
SOURCES Yt fo  dn ot

PARTICLES

p - W,
-

I 1
Va2 Xo Vi

="

Figure 1, Time centering in CYLRAD, The field
and particle variables are specified at times such
that the temporal integration is fully reversible,
centered, and second-order accurate,

CYLRAD GRIDS x EnBrJdr O E6,B4U8
0 EzBzJ: @ p, ¢

e Zmax

Figure 2. The four interlaced meshes in CYLRAD, By
fully centering the meshes consistent definitions of the
finite-difference operators allow full second-order ac-
curacy (except near the axis).

11
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t = -20t using the magnetic field and current specified at t = -5/26t to compute
the right hand side of Eq. (1a). The magnetic field is then integrated forward
one timestep from t = -5/20t to t = -3/20t using E_, to compute the right hand
side of E3. (1b). This leapfrogging of E and B can then be repeated indefinitely
to give the mmerically-computed time evolution of the electric and magnetic
fields. Since E and B are both needed at the same time for energy diagnostics

on the fields and for particle pushing, B o 1s computed at t = 0, for example,

in a fully centered way by averaging B (t + 1/20t) and B (t - 1/26t). This is
dore by integrating B forward only half a step on exit from the field-integration
wubroutine when ¢ = O in the figure. B is then integrated forward another half
step on entry to this routine prior to performing the leapfrog integration for
the next few timesteps. This reduces the storage required since B and B can

reside in the same matrices in the computer memory.

Figure « shows the four staggered spatiel meshes used in the CYLRAD program,
Staggering the meshes in this way ensures that spatial centering, and thus second-
order accuracy, 28 meintained throughout the bu"k of the mesh. This, coupled with
complete time centering, ensures that full reversibility is also retained. The
meshes extend from 1Z = 1 to NRl. The allowed region for the particles extends
fromz =0 to 7 and fromr = 0 (the axis) to r = R ax (the wall) as marked in
the figure. The r and 8 fields (x and O) meshes) have IR = 1 at the axis and
IR = NR1 half a cell outside the wall of the metallic cylinder. The Z and scalar
fields (O and O mesh points) have IR = 1 half a cell past the axis and IR = NR1

right at the cuter metal wull. The boundary conditions at the axis are then

E,(1,4)

L]
o
"

Br(lyj), (53)

H
o

EB(I,J) =0= Be(l,J),
9(1,3) x 9(2’3)’

12
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60(1,J) = 69(2,J),
Bz(l::j) = Bz(znj): and

E,(1,3) = E,(2,3).

(5a)

At the outer limits of the mesh (the radial factors are defined by Eq. (8))

p(NR1,j) = irrelevant,

6¢(NRL,j) = 0, (50)
E,(NRL,j) = 0,

BZ(NRI,j) = computed normally,

E_(NRL,3) = E_(NR,3)* = /' ,

B.(NR1,J) = -B (MR,J) ,

Eg(NRL,[) = -E(MR,J), and

Bg(MRL,J) = Be(NR,J)* r-/r+ .
The siguificance of 8¢ will be brought out shortly.

Periodic boundary corditions on % are assumed (see Appendices A,B,C) so
columns IZ = 1 and IZ = NZ2 are replicated from columns IZ : NZ1 and IZ = 2 respec-
tively., These extra columns are used as guardiines, a technique also used on the
MRHYDE staggered leapfrog mesh26 s to simplify the calculation throughout the in-
terior of the mesh. The value of NZ = NZ2-2 must te a power of 2 in CYLRAD to
satisfy the fast-Fourier transform Poisson solver but NRl is arbitrary. The mesh

spacing is uniform in both r and z but the mesh intervals 6r and 0z are arbitrary.

Figure 2 could apply equally well to a Cartesian grid but the boundary con-
ditions at the axis, Equations (S5z), would have to be replaced by some other
set appropriate to say a metal wall, In Cartesian coordinates it is easy to
show that the usual centered difference operators defined on the mesh of Fig, 2

satisfy the usual vector differential relations

' YxA =0, (6)

13
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px !D¢ =0, and
(6)

Be =9 v 6.

The maintenance of <ese relations in the difference analogues of the differential
operators is essential if the distinction between transverse and longitudinal
fields, vital to the solution of Maxwell's equations, is to hold properly in the

numerical solutions. This separation is used throughout CYLRAD.

Since we 4o not wish to have divergence of B deviate from zero, for instance,
if initially set to zero, the divergence of the curl operator, ZDx, must be
jdentically zero in Faraday's law, Eq. (Ra). This condition, when satisfied,
has the further consequence that the transverse and longitudinsl parts of the
electromagnetic field can be decoupled in the difference as well as the dif-
ferential Maxwell Equations when the dielectric matrix € = constant. That is,
the Y—D x B term in Ampere's Law, Eq. (la) cannot ccntribute to the longitudinal
part of E either. To insure this, the divergence operator V_ has been chosen in

._D
a difference form to ensure that ZD J (ZD x A) is identically zero for any vector

field A whatsoever.

To ensure these relations in cylindrical coordinates, I have defined

(ZD¢)I‘(1’J) z Mi+lnj)6r'¢(ihj) > (73)
(ZD¢)Z(1’J) = 9_1 i;;]) ‘;ZQ (inj'l) » (7b)
Ox ), (1,0) = Ay (4,341) -A,(1,9) | (7c)
- 8z
9. xA)(1,3) TA (1,) - A (1,§-1)
8 r r
[
’ (1a)
Az(i+lsd) - Az(isd) H
- 8r
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(O xA),(1,0) = rjhg(1,3) -rjAg(1-1,3)

ry Or (Te)
(T A)(5,3) = £ (1,0) -rjA_(1-1,5)
r, or
(7£)
+

Az(i,3+1) -Az(i,j)
bz *

The subscript D refers to "difference" operator. Throughout the rest of this
peper the indices i and j will be used for IR and IZ respectively. These
variables will be indexed as on their respective grids in Fig. 2. The indices

+ -
on the radial factors ri, r, and ry have the following meaning:

r, = (i-3/2)ér,

e r+8r/2, and (8)
r, #=r.+6r/2, an

T ER, - Srfe .

It is an easy matter to verify relations (6) using Eqs. (7) and (8). This of

course, requires the definition,

2
v, 0(1,0) = r, @ (141,0)-2r, 8 (1,4)+r, @ (1-1,4)
r. ére

(9)

+ 8(i,,%1)-20(1,5)+e(i,4-1)
§z2
The step-by-stzp leapfrog integration of the Maxwell Equations can thus be

written symbolically as

E(1,3,t = 8) = E(1,5,t=0) + c&t[znxg(t = bt/e)] (1,3)

(10)
b J{i,j,t = 8t/2) , and

B(1,,t=3/2 6) = B(L,3,6 = 0/2) - ebegpE (b= 00) ] (1) . (w)
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This basic integration scheme has been tested thoroughly in Symbolic Algol
and discussed elswhere.a'5 39 It has the following dispersion relation (in Cartesian
coordinates),
wbt bl k Ox c28t7 . KOV (12)
e e o i ol
and thus the stability condition,
6x2 82
82 < ?/ (1+ F)’ (13)

because it is an explicit algorithm. lLong wavelength modes propagate effectively
at ¢ but there is a numerical dispersion of modes due to the finite-difference
approximations used. The shortest mode which can be represent on the mesh

has wavelength 2 cells. Here kx6x =, for instance, and the dispersion, as
shown in Fig. 5, for one dimension, is a maximm. The short wavelength modes are
slowed down below the speed of light artificially. In one dimension, with

cbt/6x = 1, this dispersion car be minimized but in two dimensions, there are
always badly dispersed short wavelength modes. In all (stable) cases, however,
the modes are non-diffusive so the mode amplitudes remain unchanged in time.

The electromagnetic part of the CYLRAD code is therefore completely energy con-

servative in this sense.

Appendix B considers extensions of the CYILRAD electromagnetic field integrator
to other geometri:s, to three dimensions, and to other difference schemes. 1In
Appendix C the inclusion of a spatially varying dielectric matrix is discussed.

By including a matrix (1/€)(i,J) defined on the @ mesh (and averaged onto the other
3 meshes, much more general problems including Cerenkov radiation and metal bounda-
ries can ve included with a minlmum of effort because the €¢-metal boundaries are
computed exactly as all other points. The cansal, conservative formulation of the
Maxwell Equations employed here makes this especially easy and ensures that the
boundary conditions arc satisfied for all time.

The question of the current source terms in Egs. (Za) and (10) mvst be settled

16
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now. In physical problems the continuity equation,

>
=ty d=o, (1%)

must always be satisfied. This ensures that every charge in the system

has come from somewhere physically and will be going somewhere physically. It
seems sensible, therefore, to ensure this condition in our fin‘te-difference model
for Maxwell's Equations. Since our divergence operator has alrealy been specified,
Eq. (14) gives a numerical consistency conditicn between p and J. We have no
reason to suspect that p(r,z,t) and the longitudinal part of J(r,z,t) satisfy

this numerical condition since we are treating these sources as arbitrary inputs,
suitably discretized, to a field integration algorithm. In practical plasme
applications where ¢ and . come from particleslz’s, this condition: can be enforced
at some computational expense by considering current fluxes through space-time
cell boundaries. 1In the general case, where boundary conditions may be compli-
cated however, the continuity equation must be used specifically to correct the
input sources. This frees the input to allow vector fields of p and the longi-
tudinal current J " vwhich are only approximately consistent. In pure Maxwell-
Equation calculations for instance, analytic forms for p and J can be used with-
out worrisome consideration of consistency. In plasma calculations the current
and charge-apportionment algorithms can be conpleteiy decoupled for simplicity,
generality, and computational efficiency. Tnsis allows one to greatly speed the

calculation of particle trajectories, by far the slowest part of the relativistic
plasma simulation.

Of course extra work must be performed elsewhere to ensure Eq. (14) Sut
this loss is small compared to the gains realized. To enforce consistency, either

the charge density or the current must be modified. Since only tine currents

17
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NUMERICAL DISPERSION
CURVES FOR CYLRAD

—— THEORY
'\ ——— EXPLICIT
+\ s2xx |[MPLICIT

0 w/4 w/2
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Figure 3, Dispersion relations for explicit
and implicit integration of Maxwell's Eq-
uat’ ns with fluid-like plasma represented
by 4 constant wp. The theoretical modes
are shown for comparison,
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appear in the dynamical Maxwell Equations and since the charge density is a
zeroth moment while J is a first moment, it is natural and physically sensible
to modify the longitudinal current to be consistent with the given charge density.

This is done through the Poisson Equation,
g-E® I (15)
rather than through the continuity equation. The given currents give rise to an

electric field via the leapfrog scheme, which has both a transverse and a longitu-
dinal part. Thus

5‘(t+6t) -E (1) = -UmSt i‘(t*ﬁt/'é) (16)

can he solved for E‘(tﬁ'ﬁt), actually calculated simulianeously with a transverse

parv. If.we call this field E*, for the moment,
ZD. E*= Lmpe # Lnp Qamn

because of the assumed inaccuiacles in i‘ The corrected field E is found by

subtracting the difference gradient of a correction potential é¢ from E*. Thus

§'§'-‘_7D6¢ . (18)
It is easily seen that

9 60 ®kmp -9 Er (29)
forces

9. E®bme .

It must be stressed the 8¢ (1,]) 18 only a correction potential, not the full
electrostatic potential. The major portion of the longitudinal part of E is found
from integrating Ampere's law; only discrepancies between J and % apperr in 8¢,
The boundary condit: ns on 8§ ¢, which are implied by Eq. (19), depend
on the boundary condit. ns satisfied by E*. In CYLRAL, Ez' is zero on the metallic

wall at r ® R, aud therefore 69 = 0 at the vall is both simple and correct. If,
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as is possible using complicated current algorithms, the continuity equation in
difference form is automatically sutisfied, 8¢ is zero throughout the system. If
on the other heud, the deviations from consistency are of t..c order of truncation
errors in the finite difference scheme, as will be the case for the fairly efficient
current-charge algorithm used for the particles in CYLRAD, small, acausal longitu-
dinal correction fields will be felt throughout the cystem. These fields propagate

with infinite speed across the system but are generally bery srall.

The Maxwell Equation solver described nere, even without sellf-consistent
particle orbits pramises to be very useful in transformer, waveguide, and antenna
calculations. Analytic or empirical current fields can be specified and the ra-
diation fields can be found. Appendix C, as mentioned earlier, allows extension
of these field calculations to much more complicated geometrics where the dielectric
constant is an arbitrary function of position. The program is completed when equa-
tions for the plasma particles have been added to the system. The next section
treats integration of the relativistic equations of motion of charged particles
in given E and B fields. These particles will then be totalled on the mesh to get
selt'-consistent currert components and charge densitivs, uced as sources in the

solution of Maxwell's equations,
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III. THE CYLRAD PARTICLE PUSHER

The relutivistic equations of motion for a point perticle of rest mass

L and charge q in a given electric and magnetic field are

ae(t) 4 ! 2 > St

= TF E (X(t),t) +@ 1#+PP(t) /e (20,
ax(t)

—— = Y(t), (21)

where P = y(l-ve/c2)%. This definition of P will be noted to differ from the
usual relativistic particle momentum by the factor of n, which has been extracted
so that P reduces to V in the Galilean limit. A finite difference algorithm to
integrate these equations should satisfy three basic criteria:

1) accuracy,

2) speed,

3) simplicity.
Several algorithms for the non-relativistic case with arbitrary E and B fields
have been used previously; a camperison of these has been performed by Carl
Wagner of MRL.°C The most used of these is the reversible, so-called "implicit"
algorithm where E end B are given at t, when the particle position X is specified,

and vhere V is integrated forward one timestep from V, at t-6t/2 to Vy ot t+ét /2.

The new velocity is found by solving the 3 x 3 system of equations
(Vg = Vg)/t5 =SB+ (Vy * Vi x B (22)
Here O and N have the mnemonic meaning "0ld" and "new" respectively. This method
is characterized by the time-centered V x B term using the average of the new
and old velocities. The name "implicit" arises because VN is involved implicitly
in the right-hand side. B
This method has several niceproperties which make it quite attractive:

1) The algorithm is reversible., The particle trajectory cam, in
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principle, be retraced if time is reversed in the code. This neglects
of course, computer round-off errors.
2) The usual electrostatic leapfrog algorithm is recaptured when B=0.
3) When E ® 0, the particle moves in a non-drifting circle and the radius

of the crbit is constant. By dotting (3) with (VN + VO) 8t one finds

B My T Y (25)
showing that IVNl = |VC| in the absence of an electric field.

L) The energy gain, by (4), is just E * SZ, as would be cxpected on
physical grounds.

5) The frequency of the finite timestep cyclotron gyration can be corrected
by the standard tan afa correction51 so that the particles themselves
execute the classical orbits at precisely the correct gyrofrequency.

An additional criterion which can be satisfied is:

6) Simplicity an® hence speed. The implicit algorithm can be made

acceptably fast if programmed carefully. Solving Eq. (22) by a 3 x 3

matrix inversion is not the fastest way, as shown shortly.

The orbits generated by the implicit algorithm even ia the case of constant
E and B are not exact but can be improved to give the correct E x B drift by
modifying the electric field vector, as well as the magnetic field. to include
corrections for the finite~difference features of thc algorithm. This can be
done in another, simpler, way. As long as |§_x gj < 82, these exists a frame of
reference in which the electric field is zero. By subtracting the velocity

%-chg/fwMNEamgamemhﬂﬂat%ewnmtmﬂkkpmhhm

we get the following "E xB" algorithm for advancing the velocity.

Wihtw (2h)

22
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e

L.g, ._6.2. <Xa+1ll) xB (plus tan Ol/a)s (24)

v
=

The advantages of the E x B over the implicit algorithm are that exact

cycloidal orbits, without modifications t¢ the electric field can be obtained

E
as a cell quantity and so (24) can be made somewhat faster than (22). The

in the limit where E and B are constant. Furthermore, V. can be precomputed

method (24), for all its physical appeal, suffers a serious defect. When
|§ X §| > B? there is no frame of reference where E is zero but B can be trans-

formed away Thus a wholly different algorithm is reeded when VE >c, Still a

thizd algorithm would be required when VE 2 ¢, These problems arise in practice
when the magnetic field is zero and thus pose serious problems, for instance,

when configurations with neutral points, lines, or planes are being considered.

There exists a third variation of the implicit particle pushing algorithm
which possesses advantages of both the implicit and E x B methods and can be made
somewhat faster than either. In addition, it generalizes conveniently to the
fully relativistic egnuations (1) whereas direct solution of Eq. (22) in the
implicit algorithm does not. The algorithm is basically three-step in nature:

a6t
+ A
iR

fo<

(J<

V. * G (4 ) x B (using tan afa), (25)

. 3%

V=V E.
A = a =

By applying half the electric field before the magnetic field rotation and
half afterward, the algorithm becomes fully reversible and yet the inagnetic
interaction can be treated in the absence of an electric field. This latter
fact iz very important wnen one generalizes to the relativistic Eq. (20).

Whan the algorithm in (25) is used, it is easy to show that the implicit result

23
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is recovered. When the magnetic field B is zero, the usual electrostatic leap-

2 _y2 +y) « Bt
frog method is recovered so that V\© - V ° = (Y! _\_12) — E.

Since the -orrect cyclotron frequency can be achieved by corrections to B,
the solution arising from Eqs. (25) must be judged samewhat superior to the
other methods mentioned because it is faster. It is made fast using the two-
step rotation procedure given above, rather than the usual 7 x 3 linear-equation

reduction, to solve for Xi given L (with E absent). This is done by setting

V=aVvy +fV xB,
- T U O S
VoY +fV xB (26)
S A a2z -
tang-s—t-lBl

vhere & ——‘%‘f-—— and £ = 21‘1/(1 + fiBz).

In practice 9 is expanded up through fourth order and evaluated very ef‘iciently
giving roughly single-precision round-off-sized truncation errors on the IBM 560/91

where 6 to T digits can be kept through most calculations.

Figure 4 shows the geometric interpretation of this method in the plane
perpendicular to B. The pure magnetic push over timestep 8t with constant B is
really a rotation of \_12 in the velocity space by the angle p = wcﬁt = :—:t- |8|.

The correction factor r1 ensures that !2 is displaced an angle of exacily B/2

fram "Lx even though !2 does not lie on the orbit circle beacuse it has the "rong
magnitude. v1 x B does point 1‘r<:|'n_\11 through !s because the angle has beun
bisected, however, £o the magnitude correction r2 ensures that foV, x B stops exactly
on ya. It should be fairly clear that the amount of work involved computationally
is much less than required to solve Eq. (22) directly even with E® O. The two-
step "half E" algorithm, which is shown in Eq. (25) requires in fact about 35§

fewer operations than the implicit push.

24
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B = 8t qB/mc

VELOCITY SPACE ROTATION

L =Sty T vl

AXiS

CONFIGURATION SPACE ROTATION

Figure 4, Geometric interpretations of the
particle pushing algorithm. Both the con-
figuration space and velocity space portions

of the algorithm contain energy conserving
rotations,
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When the relativistic equations are being solved, the relativistic mass must

be used in expressing the factor £ Thus 391;— _cf__ where P is the
1 Sme Vo2 + R -

relativistic momentum ( over my ) replaces V in the previous arguments. Pro-
vided that F# is constant, therefore, the relativity merely amounts to a re-
normalization of the magnetic field. This is the great advantage of the "half E"
algorithm, By separating the electric and magnetic interactions in the relativis-
tic generalization of Eqs. (25), P,°® P,® bas been assured and thus F* inside the

square root,

/_C_
=+ ’

which is used in the magnetic field renormalizetion, can be treated as constant
over the timestep and evaluated explicitly. Except for this square root factor,

the relativistic and classical integrations zre the same.

Actually, in the course of updating the particle position as well as its
velocity, three more square roots must be taken, one to retrieve the laboratory
velocity fram P and two to correct for cylindrical coordinates, a problem dis-
cussed below. To handle these four square roots in the optimized code (they
take about 15% of the particle-pushing time in the Fortran version of the code),
a special hand-coded PIZ60 program has been written which requires no power series
expansions to start. A table look-up process on the floating point exponent and
the floating poin* fraction is used to get a very good starting value for a
simple iteration which doubles the number of significant figures every cycle,
This roviine requires ~ 3 usec per square root and thus uses only 40% of the time
taken by the system square root. One pays for this with a table of over 1000
words, a fairly small price on the IBM 360/91.

The integration of P from t - gt- tot + -23 constitutes only half of the

particle-pushing algorithm. Integration of X fromt to t + 8t iz accomplished

26




T

et e i g e e R

Relativistic Plasma Simulation

a8 follows in Cartesian codes:

X(t * 86) = X(t) + 0ty(t + 5Y) . (27)

In the relativistic case V(t + éﬁ) is determined, as mentioned above by taking a
square root, an annoying but not prohibitive procedure. What is more comstricting
i the cylindrical coordinate system in which we must operate. In Cartesian
coordinates X executes circular motion in constant B with zero E and moves with
the proper parabolic motion when E is constant and B zero. Great difficulties
arise fram the angular momentim accelerations of the charged rings in the r-6
plane of a cylindrical system. At the axis, for instance, there is a cubic
singularity 12/r® when the angular momentum is nonzero. Furthermore, we would
like to preserve helical orbits (circular in the r-0 plane) for single particles
in a constant axial magnetic field. The algoritim given below accomplishes this
in a very simple and therefore etricient way by focusing on the Cartesian-cylin-
drical transformations. Therefore singularity and circularity problems are com-
pletely bypassed.

We need only consider the perpendicular plane and are given Vr and V9 ’
defined at t + éﬁ , with which we must advance r and 6. Since the basic enzatz
is azimuthal symmetry, however, only the radius r of the charge rings is given
as no O variation is permitied. We are free, therefore, to focus on the ring
element at € = 0, as shown in Figure 4b., The particle traversec the straight
line slement V &t from r, to ry. At the starting point V, ® V_and vy ® Ve

Since these velocities continue constant throughout the time interval 8t, we

have:
x2 A + Vrot 0
(28)
Ya = Veﬁt .
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The initial radius is r,. The final radius r, is given by
r, ® 4&;2 + 2 (29)

The optimized square root is used of course. During the next timestep r, becomes
r, and is again assumed to lie along the x axis. The matter does not end here.
Since r has rotated an angle @, the resolution of V along © and & must be changed
at the end of the timestep even though thz actual velocity of each ring element

is constant over the zntire interval &t. The transformation used is simple,

<t
]

= cosa + V sina ,
I I 8

(o)

Ve =-Vr1 sina + \Ie1 cosQ

where sina = Yz/r2 , cO8CQ = xl/r.‘, . The only problem arises when a "particle"
stops exactly =, ivhe axis, In this case, we can arbitrarily set cosa = 1 and
sina = 0, This makes all momcntum radial which it would have to be for a
particle to stop on the axis.

Stringent tests of this entire technique h~ve been performed. Energy is
conserved exceedingly well wi:zen E is zero because the particles execute perfect
circular motion about a constant axial magnetic field. It is obvious, in this
respect, that transformation {30) is energy conserving. It is; also clear that
the algorithm is fully reversible, a property generally conaidered good in particle
pushers.

The data fcrmat of the coordinates and velocities for each ring is floating
point although the positions are treated in fixed-point insofar as area weighting
is concerned. The DIC method of area weighting is used,16 a fixed-point tech-
nique particularly well suited for use when the multi le-mesh feature of the
field definitions is taken into account. Normal bilirn:ar area weighting of E,

B, J and p is used but four distinct meshes and hence four distinct sets of

28
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weights are needed. (The currents are also being treated NGP, as discussed
elsewhere.) By using DIC, these weights are precomputed for a finite set of

M , X Mr subcells with each computational cell. Mz and Mr are powers of 2 8o

that the subcell numbers are represented as log,M, and log,M sequential bits

| in the fixed-point representations of z and r respectively.

In actual use, of course, the accuracy of the particle-equation integra-

tions is not perfect. The method is fully second order, due to the time centering
and reversibility and thus the well established guidelines for particle pushers
must hold as discussed in Section IV. Thus Ot should be chosen sufficiently
suall that wcbt and mp&t are considerably less than unity. One also expec'l:e33 »34,35
that the code will misbehave when )&D and c/mpe are lengths considerably less than
one cell. From preliminary runs, as discussed in Section V, the greatest errors

l seem to arise from interpolating particle wource terms and field quantities to

‘ and from the cylindrical mesh.

The initial Fortran version of the particle pusher used 145 psec of computer
time per particle oa the 360/91. A highly optimized PI360 version has been
written which is computationally identical but which requires only 95 usec per
particle. The savings result from special computational t;echn:lquesls’16’2h’25
vhich can be written effectively only in machine code, Shifts, rather than fix

and float operations, can be used to sort out the cell and subcell numbers for

instance., It is felt that even greater improvementes can be made by increased

use of fixed-point operations.

Although the PI360 version is highly machine dependent, similar techniques
would be profitable on other machines with a greatly different structure. Of

particular importence in particle pushers is the one-pass aspect of the overr.sl

i ko

algorithm. An entire timestep can be performed with only a single reference to

fakans
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the particle tables, .7 external mass storage is being used for the particle
table, the relatively exnensive transfer times to and from disc, say, need only
be paid once per timestep. In the present example, magnetic disc transfer times
per particle are about 65 psec for reading and writing, quite comparable to the
particle-integration time. Since these transfers can be overlapped with each
other and with the one-pass integration of particles in ‘the CFU as well, optimal.
use is being made of the camputer. Even when direct core residence time is not
being charged as CPU time for I/O transfers, as is the case on the IEM 360/91,
total program residence time must be considered. If, for example, overlapping
were not possible, the running of a 1 hour CPU job would require roughly 3 hours
of wall time, If the program filled core (as these jobs often do), nonoverlap-
ping (or a poor compute-transfer balance, cauld mean that two thirds or more

of the CPU computing power was being wasted. Since computer centers are also
aware of this possibility, it is not surprising to see that most charging algori-
tims charge by the core request as well as the CPU time used. Thus jobs which
£ill core usually pay for the whole machine since fractional utilization of the

CPU is no longer a factor.
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IV, MERGING THE FIELD INTEGRATION WITH THE PARTICIE INTEGRATION

In Section II a rather general algorithm was given for numerically integra-
ting the Maxwell Equations forward in time to determine the three components
of E and the three components of B on the two-dimensional r-z mesh with all values
being specified at the same point in time, In Section III an optimized, ef-
ficient algorittm is given for integrating the relativistic charged-particle equations
of motion given E and B fields on a uniformily spaced r-z mesh. To camplete

specification of the entire CYLRAD algoritlm, the prescription for merging
these two phases of the calculation is now discussed in more detail.

Interpolating E and B from the mesh to the particle position is carried

through according to the usual area-weighting, or bilinear interpolation

algoritin 258 Although the mesh 1s basically cylindrical, this part of the
calculation is carried out as if the mesh were Cartesian. At the axis, where

¥

3

.

5 problems with the metric will be most cevere, Er’ Ee, Br’ and 13e vary linearly

£ anyway so the calculation will be accurate. The z components of E and B

, typically vary quadricatically away from the axis so the straight area weight-
ing will only be accurate to zero order in these two cases.

The calculation of the sources is currently being carried out in the

usual charge-and current-sharing approximation as on a Cartesian grid but

e T

several extra degrees of freedom are permitted the physicist here, Even though

the charge and current densities are required in Maxwell's Equations, the CYLRAD

particle pusher gives the total charge and total currents in each cell.

Presently this total charge and current is being divided by the exact cell

L re T T

volume but this part of the calculation can be modified in many ways. Averaging

over several adjacent cells could reduce spuriocus fluctuations, for example,

In area weighting to determine the fields and sources, the geametric inter-

i pretation 1s that of an azimuthally symmetric ring with rectangular cross-section
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expanding and shrinking as it moves on the mesh. The ring extends from

r-8r/2 to r+0r/2 in radius and from z-8z /2 to z+8z/2 along the axis, Although
rmore than half of the ring's charge, if of uniform density, lies outside r, the
simple area weighting prescription does not take this into account. To treat
this properly, the radius r, used in camputing the sources must be somewhat

larger than r in crder that simple charge sharing have nr. systematic error.

It is easy to show that

r, = Jra +3 (1)

forces the usual charge sharing to allocate tae correct proportion of charge
inside and outside of the particle radius r since r, is the center-of-charge
radius of the extended ring (The improved square root routine is used here).
One also hes the possibility of employing k-space smoothing'>*'0

Fouler analyzing in the z direction. This would not improve the radial varia-

of pand J by

tion at all but would be helpful where the radial varistion is smoothed by
other means. Thus finite sized particles’ocould be used easily in Cartesian
codes, Perhaps then the NGP algoritim for charges and currenis could be used
with sufficient accuracy.

It bas been menticned that the DIC,}0%°37 or Discretized Interpolation
in Cells, method has been used for all the bilinear interpolations and charge
sharing, In this program each cell is thought of as subdivided into an array
of 16x16 subcells. For each subcell the four weights for the cell corners are
precalculated as if the particle were at the center of the subcell, Thus the
particles are effectively calculated Nearest Grid Point in the subcells rather
than the major cells. These weights are stored in a table and "looked wp"
when needed by a very fast algorithm rather than recalculated each time.
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DIC is particularly useful in CYLRAD where four distinct meches must be
treated 8o that the same set of weights camnot be reused for all the com-
ponents of Eand 3 or J and p. A table of weights is calculated for each mesh
and all can be referenced by locating the particle om one of the meshes. The
present particle pusher, in optimized form, takes 95 wsec/particle of which
about 30€ is area weighting, If direct recalculation of all of the weights
were performed, approximately four times as much work would be done ca the area
weighting thus doubling the CPU time required per particle,

A glance at Figure 1 shows that the current J is specified at the velocity
time, half way between the two position times at the beginning and the end of
the timestep, To ensure centering, therefore, the current must be area
weighted twice; half of the current is apportioned before the position is up-
dated (but using the new velocity) and half of the current. using the same
velocities, is apportioned to ihe new position at the end of the timestep,

In addition to centering J and thus keeping the algoritim fully reversible, a
sort of aversging s being perforard which wili help greatly in smoothing
fluctuations which are highly enhanced in this nurericel plasma due to the
paucity of particles in a Debye sphere relative to most real plasmas,

Figure 1 shows the entire timeline for CYLRAD with particle as well as
field times indicated for a case where 3 radiation steps are performed for
every particle iimestep. The ¢:\|r:'¢u1;._7_,/2 is used in each of the 3 rediation
steps integrating E ,'_i toxo,'n' « These latter ficlds are then perfectly
centered to integrate V , /! / and hence X from Xo ’0! The ablility
to perform fully reversible multiple field timesteps for uch particle
timestep is very important to the optimization. In Section II the stebility
eriterion for the field integration was given. This means, in practice, that
light can traverse only half a cell or less per timsstep. Even for extremely
relativistic particles, two or three radiation steps could elapse between

particle steps thus speeding up the code by a factor of two or three. In
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non-relativistic plasmas the situation is even worse and decoupled timesteps

are even more necessary, An average particle traveling at O.1lc would need 20

timesteps or 80 just to cross a single cell regardless of )‘d or "be

When the presence of the particles are included in the stability analysis

in a simple way, one finds the dispersion relation,

. A28t 2 k_Ox
sin? 30t = cT8t sina(.x )
= 6x 2 g

(32a)

252
L 282 . o k, bx Wpe Ot
2 sin®| o
6y 2

for the case of one particle step for each radiation step. Eq. (32a), in the

long wavelength limit, reduces to the correct physical dispersion relaticu,

of = w 29432, (3)
pe

Since s8in? ( C. 26 t) cannot exceed unity for a mumerically stable mode, we now
have a much more stringent stability conditioa on 6t ,

1 > ¢ + @ “’Fez. (33)
6t2 6x2 6y 2 '

In - dense plasmas “’pe2 will dominate. Then §t < m—:—; for stability.
Wher the density is very low, we approach the previous reszult. 1n all cases,
however, the presence of plasma acts to require a shorter timestep for
stability and hence makes multiple timestepping more attractive,

Bmpirically, multiple timestepping has been found stable and otheiwise
numerically well behaved. There is some evidence, although not conclusive, from
early runs that multiple t{imestepping reduces the emission of bremsstrahlung
fr'm particle ¢ ‘lisions, This is very much to be desired in a numerical model
where collision frequencies are too large anyway due to the relatively small

number of particles which can be followed. Dispersion relations can be found
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analytically but they are extremely complicated even in the case of only 2 or 3
radiation steps per particle step, In same of the simpler limits, however,
the dispersion relation has been solved with the result that the algorithm

is numericelly stable as expected.

The date siructure of CYLRAD follows that of P POWEReS

closely, The grid
quentities, 11 in mumber (3 E's, 3 B's, 3 J's, p, and 1/¢ ), are all kept in
fast core storage as single precision floating point numbers. Given 330K
words, certainly aveilable on an IBM 360/91, we have 30K words/matrix, This
is 120 x 256 in resolution, The particles are stored in an arbitrary number
of records of fixed length which can reside either in core or on an external
1/0 device. The program is transparent to the actusl mde of the record
storage so the program runs identically on small in-core systems and large
out-of-core systems,

Figure 5a, shows the structure of each record, The first 15 words of
each record contain pertinent information about the particles in the record
such ag charge, mass, the speed of light, &t, 6r, 6z, etec. The first word
of the record heading contains the mumber of particles in the record., All
records have the same number of varticles, NPART.

Following the heading are NPART disposition bytes, ome for each particle
in the record. The disposition byte can have any one of 256 values, each in
principle specifying a different specific action to be taken tor the corres-
ponding particle. At present O means the particle is to be integrated
novmally and any other value means that the particle is to be ignored, Some
particles could be integrated for a while without contributing to the sources.

Others could have their charge varied slowly, for example.

Following the disposition bytes, actually held in NPART /4 words, are

5% NPART words containing the positions and velocities for each particle.
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5a. DATA STRUCTURE Sb. INITIALIZATION

RECORO HEADING RECORD ! RECORC 2
16 WOROS OR, DZ, MASS, ETC.
3 1ZMAX COLS.
[ N
NPART/d OISPOSITION BYTES- RMAX
i WORDS 1 PER PARTICLE /
1 RMAX
L_' ROWS
POS!TIONS ANG MOMENTA \
RST
SeNPART FIVE WORDS FCR EACH 28T
OF THE NPART DIFFER- o -
MAKDS I0FF ZO0FF
ENT PARTICLES
|

—— w — e AX|S o mem— - e

TOTAL RECORC LENGTH (WORDS) {RMAX® | ZMAX = NPART

16 ¢+ NPART/b& # SeNPART

Figure 5, Record data structure of CYLRAD, (a) The organization of
sach record with heading, disposition bytes, and particle coordinates
and momenta. (b) Record initialization of particle locations. Uniform
density cylinders, slugs, and tubes can be initialized,
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The order is z, r, P, Py, P for each particle. The momenta (divided by rest
mass) are in real physical units but the positions are carried i1. cell units
to aid in locating the particles on the grid in fixed point.

The records of particles can be grouped into larger units crlled classes.
The classes could comprise different species of say n records each but their use
is somewhat more general. It is convenient to consider electron: in oppositely
directed beams as being in different classes, for example, since the kinetic
energy and momenta of each class are printéd ocut as well as the total kinetic
energy and the total momenta of the system., Different classes cculd also have
different q values but the same q/mo value in order to pack rather finely certain
important regions of phase space.ho’hl

In initializing the positions and velocities of the particles, the record-
class structuce is also useful. All records in a class, using the present
initializer, are given the same drift and thermal velocities, these six num-
bers teing specified as data for each class., The positions of the particles
within a class are initialized as shown in Fig. 5b. The charge density arising
from each record is nearly constant over a cylinder extending from RST to RMAX
and from ZST to ZSTH+IZMAX*DZ where IZMAX is an integer factor of NPART. The
number of particles distributed radially fram RST to RMAX for each value of IZ
is IRMAX = NPART/IZMAX. After each record in the class, 2ST (Z start) is incre~
mented by ZOFF (Z offset). Thus continuous cylinders, hollow cylinders, full
tubes of plasmas, slugs, and point blobs can all be initialized with the same
program, This capability covers most of the simple configurations of interest
including homogeneous plasmas, streaming instabilities, E layers, and eleciron
beam drift tubes and thus helps to optimize a programmer's time by minimizing

reprogramming.
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V. TESTS OF CYLRAD

Several ofthe test problems used to check out various facets of the CYLRAD
program are described in this section and the results\are given. The tests
performed to date have been quite comprehensive but the testing phese is still
incomplete. Simulation with plasme in the system has only recently been achieved
and much remains to be done with diagnostics, radiation levels, and stability,
The tests chosen for discussion here will be described in chronological order.

The first part of the program written wes the main program with data struc-
ture, loop logic, and provision for data buffering. This framework was largely

copied from the PPOWER progra.mg5

and thus has been thoroughly tested and used
extensively. To this fremework was added the Maxwell Equation integrator without
provision for source terms. Figure 6 shows selected computer output of the
Transverse Magnetic cavity modes from one of the test runs. The system was

initialized at t =0 by setting all fields to zero except for E_, and B,.

9 e
These two components were made nonzero only in a small torus as shown in the
first picture for Be.
As noted in Appendix B, TE and TM radiation separates conveniently in the
code as well as in real wave-guides. Thus the field camponents (E o B'r, Bz)
and (Be, E,, Ez) remain totally decoupled in the code. The code was run with
only Ee nonzero and then with only Be nonzery proving that TE and TM are actually
decoupled in the code.
In Fig. 6, the initially iocalized radiation spreads out at velocity c
until it £i11s the cavity. The eigenmodes excited then continue to oscillate
independently. Since Maxwell's Equations are linear, perhaps the most important
tests of this phase of the calculation were the energy and divergence checks.
Without sources v «E and ¢ + B are both zero to camputer roundoff as they
should be, for runs lasting thousands of timesteps. The energy in the system

is conserved to about 0.034 over the same length of time with no observable
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Figure 6, Transverse magnetic cavity modes. An initially localized
distribution of By(r,z,t=0) (all other fields zero) was released and
follcwed in time. Energy conservation holds to a few hundredths of
a percent with an infinite conductivity rnetallic wall,
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systematic trends. This is reasmable because the staggered leapfrog ccheme

is marginally stable and becéuse the wave equations are linear and the eigen-
modes of the cavity are orthogonal numerically as well as physically. The small
fluctuations observed are due, in fact, to the small incompatibilities between
the energy-calculating algoritim and the actual congerved amplitudes of the
modes, The enesgies of TE and TM fields are conserved separately as expected,

The Poisson sclver is described in Appendix A. Several severe tests were
conducted separately and then the subroutine tv-as inserted into CYLRAD., The
most severe test performed in CYLRAD had J set by a randem number generator and
p set to zero at each time step. The divergence of E was printed out before
and after the Poisson solve. Since CYLRAD forces the longitudinal part of
E to be consistent with p, v + E should be zero affer the Poisson solve in
this test. In the runs, the magnitude |¢ ¢ E! Azopped by roughly 5 orders of
magnitude, This is about the best one could expect taking the roundoff-error
figures for the Poisson-solver accuracy into account,

The pexiinle pusher was then written and tested separately in a number of
simple applied fieldr, Figure 7 shows the radius versus time curves for four
particles in a constant axial magnetic field, Thc electire ficld is zero in
this case, Fach particle hal identically the same axial and perpendicular
energy but the particles were started at different radii, As can be seen in
the figure, all particles have exactly the same frequency. Tuis frequency,

furthermore, is given correctly by

e - A (34)
O W p24e2

to roughly machine roundoff because of the E’E.’Q@ correction described in
Section III. The particles were initialized so that each started at a different
radius or in a different direction, One of the particles looped around the

axis so that its radial excursion apparently differs from that of the other
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CYLRAD PARTICLE ORBITS

Figure 7. Radius versus time for four particles
at fixed momentum in a constant axial field. The
electric field was chosenzero. The diameter and
period of the four orbits are identical, The par-
ticles are executing off-axis circular orbits as

theoretically predicted.
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particles but this is not actually the case, If the effective negative r posi-
tion is marked, as shown by the dashed lines in the figure, all particles can be
seen to have orbits with the same diameter,

One of the particles passes through the axis during each orbit. The two
components of the perpendicular momenta are shown in Figure 8 for this parti-
cle, The radial momentum changes discontimously (drawn lineerly) over one
timestep and the agimuthal momentum has a cusp. Even for this particle the
energy is conserved out to machine roundoff in the absence of electric fields.
The ability to treat orbits accurately near the axis for beam problems was one
of the reasons for choosing to solve the momentum equation directly rather than
to utilize conservation of angular momentur® to get V o from A,

A radial, linearly increasing electric field was applied to this particle
and the test performed again. Energy is not conserved exactly in this case
because the electric field was not self-consistent, but the orbit was
periodic and did return to the initial energy when the particle returned to the
axis, The main feature of this test was the presence of an azimuthal Ex B
precession of the orbit which appeared as expected. During these various
particle tests, the source matrices calculated were printed out and checked in
detail to ensure that the area-weighting algorithm works properly.

The particle pusher was then inserted into the CYLRAD code and the entire
program was tested on the increasing-current run whose results are shown in
Fig. 9. A colum of charge was initialized along the full length of the axis
exterding out to a finite radius less than the tube radius and then accelerated
slovly along the axis by an applied non-electromagnetic force, Initially only
the radial electrostatic electric fields were present plus a low level of
cavity modes included to tickle any instabilities, if present. In this
problem the acceleration was sufficiently slow that a quasi-static azimuthal

magnetic field could be expected to develop where B, varies as r inside the

8
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PARTICLE MOMENTA VS TIME

C =20 P2 = 0.2 Py
27WE' X299 PR=40 ------- Py
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Figure 8, Radial and Azimuthal Momenta for a particle passing
through the axis of the cylinder. The orbit is exacily periodic
and energy conserving even though Pr reversesdiscontinuously
as the particle passes through “he axis.
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charged cylinder and drops off as 1/r outside the cylinder., The mass of the

particles in the charge cylinder was taken so large that no appreciable radial

expansion took place from the radial electrostatic field during the course of
i the run.

In the figure, rBe(r) is plotted at three equally spaced times after the
beginning of the mm. The gquantity rBeﬁr) should vary quadratically out to the
beam radius and then should be constant outside this radius. The theoretical
curve is shown for the peticle current at t = 150, The numerical data from one
29-point radial sine is also shown for comparison. The agreement is excellent.
The levels of rBe(r) seem to be getting closer together as time goes on. This
occurs because of the relativistic saturation of V at c; only the quantity
y/:ﬁ-vz/ce is being accelerated uniformly.

Two other features of this particular test will be of interest., The radia-
tion fields .enerated when the char jed beam is accelerated would normally rattle
about in the cylinder forever were it not for the radiation-absorbing layer

included in the calculation, This layer extends over two cells in radius, shown

f cross hatched in Fig. 9, and along the full length of the sysiem. The electric
] ! fields in this region are knocked down at each timestep as they would pe in a
resistive mediun. Thus the radiation energy which devciops does not continue
indefinitely. During the course of the run the transverse electric energy, which

does not interact with the beam at all, decreases by two orders of magnitude due

ORI

to the absorption.

The second feature of the calculation is the presence of an €-metal wall two

cells inside the real wall of the cylinder. Appendix C discusses the inclusion

Y T

of a spatially varying dielectric constant in CYLRAD. This allows more complicated

physical problems to be handled where the radiaticn propagates through a spatially-
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Figure 9. Azimuthal mnagnetic field of a slowly
accelerated charged cylirder, The solid line
shows the theoretical magneto-static field which
would prevailatt= 1500 if the charged cylinder
were moving at constant velocity,
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varying, frequency independent dielectric medium (Cherenkov radiation could be
treated for instance). An important 1se for this flexibility is the case for
€ * ®, 4hich is really treated as 1/¢ = 0. As noted in the appendix, the code
treats this as a metallic, perfectly-conducting boundary condition. Thus com-
plicated metal boundarys can be included quite easily by reducing the valves in

the 1/( matrix from 1.0 to 0,0 in regicas which are supposed to be metal.

In the test shown by Fig. 9, the outer wall of the calculation was taken to
be two cells of this €-metal, explairing the two points at zero near the outer
radius. This €-metal conserves energy properly and does not contribute ‘o the
divergence of E or tue divergence of B. These convenient propertie.. are all made
possible by the fully causal treatment of the Maxwell Equations embodied in the

code.

A final series of tests are being ccnducted in which the cylinde~ is filled
uniformly with electrons and with a smeared cut ion background. The particle
distribution is initially random in velocity with all fields zerc except the
electrostatic field caused by initial discrepancies from charge neutrality.

These tests were designed to check overall energy conservation and the bremsstrah-

lung radiated from the particle collisions, The plasma temperature was low, taken
5o that nk% ~ 15, and the particles were initialized so that there wer- conly 2

. per cell on average. These conditions give fairly high collision times &nd fluc-

| tuation and therefore fairly fast bremsstrahlung thermalization. Furthermcre,
because the fluctuation levels are high, conservation of total «nergy in the

code should be all the mcre difficult to achieve. In typical runc the energy

was conserved to petter than 1% over LOO wp'1 when rrea weighting was used on

all fields and sources. When LGP was used on the currents, however, with all
other quantities area weighted, the energy conservation disappeared entirely.

Errors of 500* were recorded for the same length run., The large NGP error
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is explained when cne realizes that no k-space smoothing to the sources or fields

is being applied as in electrosiatic SS.muhtions.zs

Electromagnetic collision {themmelization) times go roughly like (m/wp)""

times the corresponding electrostatic times., In simulation plasmas, mnk‘;‘; is

%, | a rule-of-thumb electrostatic collision time. In the present case, therefore,

E i J.somp'1 is a good estimate of the Coulomb collision time. Since there are at

‘ i most a few modes in the system tested (dimensions 16 cells x 29 cells), the very
3 shortest wavelengths, which are the slowest modes to thermalize have (W/WP)2 & 10.
’ Thus bomp" is a reasonable estimate for the bremsstrahlung thermalization time,
% in good agreement with the computer simulation.

When several timesteps for the fields are taken for each particle timestep,
k the bremsstrahlung radiation rate became considerably slower. Thus the ability

to take multiple timesteps waz found to improve the physical properties of the

simulation as well as the computatioral properties, This effect clearly results

E i because radiation arises fram orbit deflectionc. When the orbits suffer fewer
E deflections, eveir though of larger amplitudes, the radiation at short wavelengths

will saturate more slowly.

The field energy saturation levels sre also fairly well explainred for these

b tests. In the cas: of NGP currenis one would expect roughly %kT of energy for
each field component at each grid point. Here T is the temperature at equilibrium,
One also expects %k? energy in kinetic motion for each particle. Since there are
2 particles per cell in these runs, the NGP field energy at saturation should be
roughly twice the kinetic energy. The actual ratio observed was about 3, When
area weighting is used, wavelengths shorter than sbcut 4 cells are strongly

| supressed; that is, three fourths of the modes are largely inoperative. This

! means that kinetic energy should be twice the field encrgy, a ratio clcse

o the 50‘ numter given by Fig. 1C.
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Figure 10, Radiation of Bremsstrahlung by
a non-equilibrium plasma in CYLRAD. The
electromagnetic field (initially zero) ap-
proaches equilibrium, as estimated by equi-
partitionarguments, as wpet approaches 450.
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VI. CONCLUSIONS

The two dimensional relativistic plasma simulation program CYLRAD has been
described in some detail. Two main modules have been developed, the general pur-
pose r-z cylindrical Mexwell-Equation solver, and the relativistic particle pusher.
The overall algorithm is fully time reversible. In several instances, alternative
algorithms have been mentioned and the reasons for each choice given. General
criteria of simplicity, flexibiiity, accuracy, and efficiency have been balanced
in each of the algorithm choices. The paper has stressed the numerical aspects
of the CYLRAD program in order to show first, how such a program can be constructed
to be both flexible and efficient, and second, how the interplry between partial
differential finite-difference techniques (fluid codes) and particle techniques
can be n rged in the development of & hybrid code. These techniques will fand
application throughout computational physics. In incompressible flocw ihe vor-
ticity can be discretized, for example. Or in the study of galactic evolution,
the gas clouds could be followed in an MHD approximation while the stars could
be followed as particles.

Several of the ideas presented here may be of special interest.

1) Separation of the longitudinal and transverse contributions of the

currents to the electromagnetic fields has been previously recc>gnized.3 3

The
method given in Section II and Appendix A is both flexible anl efficient.

2) A spatially varying dielectric matrix is allowed. The correct boundary
conditions are automatically satisfied everywhere even when € + ®, thus quasi-
metallic or dielectric obstacles and walls can be pleced arbitrarily in the
cavity.

3) A method for accurate iutegration of the particle orbits near the axis
of symmetry is given. Thus axis crossings can be handled smoothly without singu-

larity.
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L) The relativistic mass correction is performed in a simple, reversible,
energy-conserving menner. This integration method is to be contrasted with
algorithms where V and Y are advanced independently.

S) The completed plasma-simulation algorithm, including the solution of the
Maxwell Equations and the relativistic particle pusher, allows the fields to be
advanced on a shorter timescale than the particles. This increased freedom has
been found to reduce collisional effects as well as improve program efficiency.

€) The completed plasma simulation algorithm is fully space-centered and
fully time-reversible. Tnus a host of problems, which might otherwise occur,
can be avoided.

Proposed calculations on the IBM 360/91 computer (~ 400K words of 32 bits
each of useable fast core memory) can ve performed on a 50 x 512 mesh at less
than 2,0 seconds per 3 radiation steps plus Poisson solve, Using 11 grids, then,
of 25K points each still leaves plenty of core for program, diagnostics matrices,
and particle buffers. By stretching the computational cells 3:1 in the axial
direction, systems with a 30:1 aspect ratio can be treated easily. The running
tine for this problem, assuming 4 particles per spatial grid point is 12 seconds
(100K particles x 100 p.sec/particle + 2 seconds for fields). In physical units

this is about one wp'l of real time per minute of CPU time.
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Appendix A - Poisson Solvers

In this paper, the constitutive Maxwell Equation,

v+ E=bUnp, (a-1)
is ensured by an auxiliary calculation rather than by choosing one of the
conservative charge-current algprithms.6’12 The many advantages of this are
discussed in Section II. One disadvantage is that a Poisson equation must be
solved. This Poisson equation,

Vo8 = ¥ .E -inp, (a-2)

generates a correction potential &(r,z), whose gradient is subtracted from
E* to ensure that

E =E* -3¢ (a-3)
satisfies Eq. (A-1). Calling the right hand side of Eq. (A-2) S(i,j), consistency
of the difference analogues to the differential operators necessitates using the

+ =
S5-point Poisson approximation (ri s Typ I, are defined in Section 1I),

b

ry 8¢ (141, ) - 2r, 88 (1,§) + r] 8 (i-1, §)

r, 6r°

1 (A-k)
+ 8¢ (1,041) - 28¢ (3,4) + 8¢ (§,j-1) =€ (1,]) ,

822

fori=2,5 ..., NRand j = 2,3 ..., N21., Here we again use i as the radial
index IR and j as the axial index 1Z. The boundary conditions on §¢ are

8¢ (1,j) =6 (2,j) from azimuthal symmetry and 5¢ (NR1l,j) = O because the
outer wall is considered to be perfectly conducting. This second condition is
true only because Ez‘, the electric field from the staggered leapfrog integration

of Maxwell's Equation., satisfies E * (NR1,J) = O already.

It is clear from Eq. (A-4) that S(1,j) are not used. Thus p is effectively

discarded at these pcints even though the charge=sharing algorithm does attribute
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some charge to these cells. At the axis all of this charge is used, however,

in going from a charge matrix to a charge density matrix. At the wall, the
charge lost can be attributed to & numerical indeterminacy principle which states
that all charge within half a cell, 6r/é, of the wall connot be distinguished
frae the cancelling image charges in the wall, which also lie in the same
computational cell. Thus this charge cen have no effect un the longitudinal

fields in the system.

In CYIRAD, Eq. (A-l) is solved directly without iteration by a combin-
ation fast Fourier-transform reduction in the z direction and a double sweep
metrix inversion of the tridiagonal equations for the resultant Fourier harmonics,
After Fourier transforming each row of S in the z direction, we need only coun-
sider individual harmonic terms of the form 6¢K (1) exp (2n iKj/NZ). Sub-

stituting into (A-4) gives

+ -
3 Ty o A
X | — 6¢K (i+1) - 26¢K(i) - ¢K(1-1)]
6r° ry ri
(A-5)
4 sin® nk/NZ 6¢K(1) = sK(;).
6§22

Solving the tridiagonal system of Eqs. (A-5) for 1 = 2,3 ..., NR gives a matrix
of 6¢](to overvrite SK' These harmonics are then Pourier synthesized to give

the final result, 6¢ (1,j).

5

The fast-Fourier-transform method was developed h; the author at Culham1
and has been in use for over a year at NRL in the PFOWER electrostic simulation
codeau’es. Every effort has been made to make the code efficient and accurate.
With the FFT subroutine in assembly language and the tridiagonal solver in
Fortran, a 128 by 128 system can be Poisson solved in cylindrical coordinates

in .48 seconds on the 390/91. The tridiagonal sclver is presently being ccded
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in PL360, a symbolic assembly languege for 360 computers, and is being

modified to solve two harmonic equations simultaneously. The estimated Poisson-
solving time for the 128 by 128 system will then be about .35 sec. For compar-
ison, a single radiation timestep leapfrogging E and B forward takes about .20
sec. in Fortran. Thus the field integration pert of the CYLRAD code will be
slowed by about 504 if 3 radiation steps are performed for every pariicle step
(Poisson solve). This 50% slow down of the field integration is small, however,
when particlc integration times are considered as well. With only 2 particles
per cell, we have over 30,000 particles to integrate every timestep. This is 3
seconds per timestep for particles, .6 second for fields, and .35 second for a
Poisson solve. Thus the Poisson solve costs at most 10% of the cycle time, By
contrast, the conservative charge-current algorithm, except for possibly knotty
problems at the boundaries, would allow us to do away with the Poisson solve
entirely but would roughly double the particle integration time. Thus the

Poisson solve method saves a factor of akout 2 overall.

As a special case, the conservative charge-current prescription could be
used in the CYLRAD algorithm resulting in 8¢ (1,J) = O to computer roundoff error
everywhere in the region of calculation. Since single precision is only 6 figures
or so on the 360 computers, however, it seems quite likely that some form of
"divlergence cleaning” would still be necessary every 1000 timesteps or so. The
divergence of B in CYLRAD is zeruv to only about 4 or 5 places, for example, since
roundoff errors accumulate over a few thousand iimesteps of the radiation fields.

Thus it may be necessary to use such a divergence-cleaning routine for B as we.il.

It 1s advantageous to calculate in single precision as much as possible
since the useable core storage is then effectively doubled. Therefore close
error checks on the Poisson tolver have been performed. The test cases were on

small 16 x 29 systems and on larger 128 x 128 systems. In the former caze

53



Boris

28 =S to about 5 figure accuracy; in the latter case, tc about b figures.
As ¥ 3¢ is typically only a few percent relative to E*, however, the actual
error in the physical fields, in the worst cases would only be a few parts per
million.

Other methods of Poisson solving would suffice for this problem, of course,
since the consistency conditions for the difference analogues of the vector

differential operations prevent the use of Poisson coefficient smooth.'mg]'s’16

immediately. Bunemnle, Hockney1 ’20, Golub and Nielson21 all have direct
methods for Poisson solving which may be adapted i~ this problem. 1In addition,
the classical iteration meth0d822 , could also be applied but at a large expense,
The Fourier method seems more flexible than these methods and is of comparable
speed and so has been used here. The Fourier method also generalizes conveniently

to other geometries and to three dimensicns since harmonic analysis in the ©

direction (or X, Y, Z) as well as the Z direction is allowed.
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Appendix B - Generalizations of the Maxwell Equation Solver

Since the particle-pushing algorithm treats one particle at a time and
only five coupled ordinary differential equations must be solved, generali-
zation of the algorithms given or suggested here to different geometries or to
three dimensions will be quite straight forward. Modification of the Maxwell-
Equation algorithms including the Poisson Solver used here presents a far more
difficult problem from a practical viewpoint. This Appendix considers Maxwell-
Equation Solvers in other than r-z cylindrical coordinates and gives vari-
ations on the staggered leapfrog integration algorithm which have special pro-
perties for various applications. I consider first the integration of the
Maxwell Equations using an implicit rather than an explicit formulation of the

partial differential equations,

An implicit difference equation is one in which the time derivative terms
include the quantity being solved for at the new time. For the Maxwell Fquations

we write, in analogy with Eqs. (10-11),

E(erst) = £(1) + S 0] < p(e) + v B(t+s)|

2
(B-1)
bt J(t+6t/2),
B(t+8t) = B(t) - c—g—t— [\_72 x E(t) + v, X g_(t+5t)]. (B-2)

In these vector equations the desired fields E(t+8t) and B(t+6t) appear explicitly
on the left hand side and implicitly on the right. When the finite difference
operators VD are expanded, a complicated coupled system of equations is

obtained which must be solved either directly or iteratively. These equations

can be decoupled into 2 three-component sets in either of two manners. Equation
{B-1) can be substituted into the right side of (B-2) and {B-2) into the right
side of (B-1) to obtain second-order spatial equations for E{t+8t) and B(t+6t)

separately.
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Alternatively, the Transverse Electric (Ii!eBrBz in r-z cylindrical and
Transverse Magnetic (BeErEz in r-z cylindrical) modes can be decoupled in solving
(B-1) and (B-2). This decoupling is hoth convenient and physically reasonable in
2D systems, In testing the present version of CYIRAD the distinction between
TE and TM radiation has been rigorously maintained and each set of cavity modes

has been checked for energy conservation and numerical stability independently.

The dispersion relation for Equations (B-1l) and (B-2), when the spatial

derivatives are all fully staggered in Cartesian coordinates, is

25,2 2:.2 25,2
2 c2bt > c= bt 2 8= (B-3)
tan? wbt/2 = g2 sin kx6x/2 + 5% sin ky6y/2 + .“.‘DL_

This dispersion relation differs from that found earlier, Eq.(32a), by the conver-
sion of the sin® term to tan® with no other change. This means that the stability
condition found earlier, because the right side of Eq., (32a) could not exceed
unity for any wave vector, can be relaxed. In the fully jmplicit algoritbm

under discussion here, marginally stable oscillatory solutions exist for

any 6t because tan® ranges from zero to infinity. The dispersion properties

of this method are as bad as for the cxplicit algorithm, however, as can be

seen in Figure 5 for a one-dimensional case with low plasma density. Thus the
implicit algorithm, if used with substantially longer timesteps than allowed by
the explicit stability condition, will suffer unacceptably large numerical dis-

persion in physically interesting wavelengths.

The more appropriate regime for use of the implicit formulation is in
coordinate systems having a singularity. Polar cylindrical coordinates is a good
example and will be considered briefly. The method also generalizes easily to
r-9-z systems since the z coordinate is particularly easy to treat and Cartesian
systems, x-y and x-y-z, are even simpler. Figure 11 shows an appropriate r-9

grid whose major difference from Fig. 2 is the ncn-staggering of meshes in 8,
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A MESH FOR POLAR
COORDINATES
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Figure 11, An r-6 mesh for the implicit
integration of Maxwell's Equations. No-
tice the interchange of 4 and z coordinates
radially relative to the CYLKRAD Mesh,

57




P M ————ae i 1 A i . .o v

Boris

labelled by m.

sttt g

definitions (assuming their use in m-space for 8 w:riations):

, (7 ¥),(i,m) = p 1O - Y1) ,
E (9 M )gltm) = & 222

+ -
(r, A (1) - r, A_(i-1)) .
(v, * 8) (i,m) =i—i = Lr +%Ae(i),

(9pxA) (1,m) = & B a (i),

vy

i
(A (1) - A (i-1))
‘ (.V_Dxﬂ)e(i,m) =.8 -2 or & ’
: 2 r, A {it1)-r A (1))
!rl (vaA)z(l,m) - z[ %7( i+1'e = ;"o ) ;i:_'FAr(i)] ,
== i
+ -
; . ¥ (it1)-2r, ¥ (i)*r, ¥ (i-1)
9,2 ¥ (1,m) = i—.[rl 632 i ]- z—}r Y1) .
1

where the radial factors are defined as

ri+ = (i-1) or '
r, = (13/2) br,
ri- = (1‘2) 5r .
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This added complication is removed because a fast Fourier transform of (B-1) and
(B-2) in © is to be performed to decouple the radial variation from the azimuthal
variation. This transform allows derivatives in © to be taken analytically in

m-space and does not couple adjacent m values. The TE (Ez » B, Be) and T™M (Bz,

Er’EO) equations therefore become tridiagonal systems in r for each 6 harmonic

To pursue this in greater detail, consider the following difference-operator

(B-4)

(B-5)

(B-6)

(B-7)

(8-8)

(B-9)

(B-10)

(B-11)
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Here "m" can be replaced by any particular finite difference analogue, say

—’%ﬂ’ for the 8 derivative if desired.
When these definitions are substituted into (B-1) and (B-2), the following

two systems of tridiagonal finite-difference equations are obtained

&=

B, (t¥5t,1) = [Br(t,i) = 5,,51 (bxg(t))r(i)] S l;;j:} E_(t+t,1),

By (t+6t,1) = [Be(t,i) - cg—t (ang(t))e(i)]
cbt

YT (Ez(t.+6t,i) - Ez(t+6t,i-l)) 5

E_(t+6t,1) -[E (t,i) + - ¢S (vag(t))z(i) - lméth]

4 cbt i Be(t-r6~t,i+l) =\ Be(t+6t,i) -
2:? or -
cbt (t+6
- '2—!‘:.;.- imB (¢ t,i)
for Transverse Electric modes ard
] E_(t¥6t,1) = [E (t,1) + c“(v xB(t)) (1) - hnawr]
i + cbt +6
: 2—!_-? im Bz(t t,i),
1 (8-13)

Ee(t+6t’i) = [Ee(t 1) + &% cbt (vaJ_3_(t))e(i) S lmétJe]

] 5t
1 o %E [Bz(t+6t,i) - Bz(t+6t,i-l)] -
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B,(tH8t,1) = [Bz(t,i) -% (vag(t)) z(1)]
oot | Fis1 B (t+bt,1+1) - r, Eg(t+st,1)
Tery or (B-13)
+ % 1nE_(+5t,1)
1

for Transverse Magnetic modes. In both the TE and the TM cases the equations

to be salved can be reduced to a single scalar tridiagonal system. For example,
in Egs. (B-12) for TE radiasticn, the equations for Br(tﬂt,i) and Be(t+6t,1)

can be substituted into the equation for Ez(t+6t,1). Once the resultant scalar
equation is solved, Br(t"'bt,i) and Be(t+6t,i) can be found explicitly by sub-
stitution. This algorithm has the disadvantage of requiring Fourier transforms,
in 8, of all the field variables. Longer time steps can be taken, however. This
algorithm alzo suffers in that the dielectric matrix technique mentioned earlier
and discussed in Appendix C cen only be used in axially symmetric configura‘ions.
There is the compensation that Fourier smoothing techniques can be applied in 6
and somewhat coarser 8 resolutions can be allowed than would be possible using

an unsmoothed finite-difference approach.

In 3D cylindrical and in 2D and 3D Cartesian coordinates similar equations
are obtained. In each case the implicit equations can be solved directly with-
out iteration by Fourier transforming in all but one of the dimensions and then
solving the resultant scalar tridiegonal equation ty a two-sweep Geussian reduc-

tion as used in the CYLRAD Poisson solver.

The Fourier harmonics labelled by k in the z direction and by m in the 6
direction can be treated "exactly" in the following sense: The sin® terms on
the right hand side of Eq. (B-3) get replaced by the corresponding amalytic
derivatives. Thus, if Fourier analysisz were usel for both the x and the y

derivatives in Eq. (B-3), one would have (for Cartesi: 1 coordinates)
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tanfwbtfe _ 2, 2 2 2
—F@WL F(kE+xP) + 0. (B~14)

The only dispersion remaining arises from the finite timestep used in the integra-

D e B

tion. This result suggests a fully dispersionless integration of the Maxwell
Equations in Cartesian systems where Fourier analysis is possible in all direc-
tions. Rather than using a finite difference integration in time, giving rise

to a dispersion relation like Eq. (B-ll4), the correct dispersion relation

W = cz(kxz + kyz) (B-15)

i T o e

can be used to advance the phese of each of the Fourier harmonics analytically.
When this is done, no numerical dispersion is present, only the aliasing which
occurs because a finite discrete representation of an essentially continuous
system cannot be avoided. This method of dispersionless integration would allow
mich more accurate treatment of short wavelengths and would permit much longer

% runs with strong phase coherence of waves in systems where (8-15) applies.

The treatment of the plasma sources would be somewhat more camplicated than
indicated above in Eq. {B-15) and would involve the charge-current con-
siderations mentioned earlier in connection with the CYLRAD algorithm. These
problems are all handled quite easily and accurately in kespace however. One
such problem arises in the form of a numerical inaccuracy because the socurce
i(t*ét/e) will be assumed constant over a timestep when advancing the amplitude

and phase of the (kx,k ) mode. The (k ,k ) component of J must actually be re-
En(kx,ky) 6t /2
Ta(kx,ky) 0t/2

duced by about sin to reduce this inaccuracy. This is

o-iwt -iwbt/2

Just the factor by which %_k£5t ‘-Io dt differs frum go. e , the value

of the current at the center of the timestep.
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Aprendix C - Spatially Varying Dielectrics
The general purpose Maxwell Equation solver discussed in Section II can be

generalized very 3imply to include the presence of a spavially varying dielectric.
The properties of this dielectric medium are assumed to be time and frequency

inderendent. The pertinent Maxwell Equations became

dp*
3 T CVxB - bmy, (c-1)
3B
™ = CYx [ pfel, and (c-2)
D= bmp (c-3)

The superscript * in Eq. (C-1) indicates that the D* contains, in pirinciple, error
components in the longitudinal field due to discrepancias between p and J as
discussed in detail in Sections II, IV, and in Appendix A. These error components
can still be elimirated using the Poisson Equation arising from (C-3), as before,
with simple boundary conditions on 8¢, regardless of the spatial distribution of
dielectric, €(r,z). In CYLRAD the quantity 1/€(r,z) is stored in a matrix
defined at the © mesh of Fig. 2. The values of % on the other meshes are found

by interpolation from the stored values when needed.

D

thus v, + B ® O is siill assured. Furthermore D, (longitudinal) arises only

The term D/€ is found by a multiply inside the difference cperator V. x and

from J 1 88 required by physics although —Dt (trensverse) can arise in part from
J, through coupling caused by the 1/€ tem in Eq. (C-2). The usual boundary
conditions _ll“ continuous, D continuous, at a dielectric interface with no
surface charge are also preserved in the staggered leapfrog solution of the

finite-difference Maxwell Equations. Thus a very complicated elliptic boundary
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value problem is solved in an essentially simple manner by solving the causal,

hyperbolic, time-dependent physical equations.

The quantity _D/€ is the electric field, of course. When _E_" is not contin-
uous across a dielectric interface, the curl of E is also non-zero so & burst
of radiation is emitted through time variation of ti.e magnetic field. This
source of b_B/bt turns off when the boundary condition ie satisfied, The method
is sufficiently flexible to allow perfectly-conducting metallic boundary condi-
tions to be simulated. By setting 1/€ = 0 in some region, the electrir fields
in that region are brought to zero. The longitudinal displacement D does not
even see these complicated €-metal regions, however, so a very simple set of
boundary conditions is retained for the Poisson Equation ard the difference-
formula integration, The importance of being able to solve the wave equations
with arbitrary dielectric media in the calculation cannot be overstated. Very
complicated problems become easily tractable., Cherenkov radiatimn of particles
traveling through dielectric media at velocities faster than the lighi velocity
in the medium can be studied in a detailed way for quite general dielectric-
particle configurations., Complicated dielectric wave guide and transformer
problems became tractable. Most important of all is the ability to treet radi-

ation and plasma in fairly arbitrary metallic containe:rs.

When € approaches infinity in a dielectric, the medium imitates metallic
behavior because the polarization charge becomes almost totally free to move
and therefore moves as would the equivalent conduction charges in a metal. If
a point charge is imbedded in an €-metal, for instance, the "metal" polarizes
and all the charge from the point particle appears at the surface of the €-metal
region since E is zero inside. Further, since the equilibrium §1 must be con-

tinuous across the €-metal bounding surface, and since E is zero inside, the
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electric field leaving the €-metal will become perpendicular to the surface when
all the radiation fields from initial transients have been damped away. This
means that very complex electrostatic problems, as well as time-dependent electro-

magnetic problems can be solved quite trivially by CYLRAD.

The equations can undoubtedly also be generalized to treat problems where

a spatially varying w(r,z), the permeability, is included. In many cases it

may be necessary, in fact, to run the entire problem with a false value of p
in order to scale the electric and magnetic fields in a convenient way so that
7 w = w iate. =

the scale length ¢/l e and ADe vth/ - will not be too dispeiate. An equi

valent way of looking at this is to rescale ¢ or to decouple the electrostatic

and electromagnetic masses of the particle.
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Bit-Pushing and Distribution-Pushing Techniques
for the Solution of the Vlasov Equation*

K. R. Symon, D. Marshall, and K. W. Li
Department of Physics
University of Wisconsin

Madison, Wisconsin

ABSTRACT

In a bit-pushing program a plasma is simulated by manipulating a pattern
of bits in the computer memory representing the pattern of particles in phase
space. The method is analyzed and compared with conventional particle-
pushing techniques. In a distribution-pushing program the particle distribu-
tion function is modified according to the leap-frog equations of motion for
the particles. Algorithmsare developed for accuracy and efficiency. Sample
results of both kinds of programs are presented. Results are presented from
a one and one half dimensional distribution pushing program simulating a plasma

beam emerging from a circular hole.

* Work supported by the Atomic Energy Commission.
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I. INTRODUCTION

In this paper we present two approaches to the comuier simtation of
plasmas which have been investigated as ways of econonizini On memory Storage
space and time required for the solution, In order to illustrate the method,
we will consider primarily one dimensional problems. Programs utilizing these
methods for one and one half and two dimensional problems are m;der development,

We wish to find the behavior of a system of particles of a single species

moving according to the equations:

ij = vj, \'lj - a(xj), . . Q) .

where xj, vj are the coordinate and velocity of the jth particle and the
acceleration is given by

a(xj) = ae(xj) + if‘j K(xj-xi), ) )

where K(x) is the force (per unit mass) between t;vo particles a distance x

apart, and where ae(x) is the acceleration due to the extarnally applied

force, If any, on a particle at position x. The force kernel K(x) may have
various forms depending upon the particular problem to be simulated, Typical

examples are shown in Fig. 1. For the case of a Coulomb force between plane

K K
] o2
0
X
zueo enet——

vﬁ&,

K
d
X
(a) (®) (cs
Fig. 1. Forms for the force kernel K(x).
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charged sheets, the kernel has the form shown in Fig, 1(a), where ¢ is the
charge density per unit area and y is the mass density per unit area. If we
take the charged sheets to ,hgve a finite thickness d, then the abrupt step
becomes nodified.ns shown in Fig. 1(b); thif is al;o the form for the force
kernel associated with the cloud in cell model in one dimension. If we are
dealing with & beam of particles of finite cross-section, the kernel will

have the fqr, shown in Fig. 1(c), where the force falls off at large distances
as 1/x2 if the beam is in empty space, and falls off exponentially if the beam
is confined betwesn conducting walls. We will assume that the plasra is con-
tained within a length L along the x-axis, -4L < x < %L, We will take
periodic boundary conditions, that is we will assume that for every particle
in this interval there is an identical particle at the same relative point

in every other interval of length L along the x-axis. For this reason it

will usually be convenient to choose a kernel of the form 1(c) for which the
force between two particles falls to zero before they reach a distance L apart.

The energy integral for the above equations is

2
E=Z ). “+ZvV(x)+ z v, (x;-x;) (3)
309 7570 G patrs 1,3 P34

where the external and pair potential energies are given by
X 0 b
V) = - [ 3,00 ax, @

x
Vp(x) = -I K(x) dx. (5)

1f we use the coulomb kernel 1(a) for a large number of charge sheets distri-

buted with a density x(x) per unit length, then the electric field is given by
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£m = B [ xeext) k) ax, (®)

and we can show that the thzrd term on the right in Eq. (3) reduces to the

usual formula for the electrostatic potential energy:
% ” KGOK(x') V) (x-x') dxdx’ = I % € (x) dx )

The Vlasov equation corresponding to this problem is

EevEiamE-y, ®)
g(x) = ae(x) + [I K(x-x') £(x',v') dx'dv'. 9)

The linear dispersion relation for waves of wave number k, frequency w is

readily shown to be

2

W ag/av
1*T[w_vdv=0, ) .(10)
where g(v) is the unperturbed velocity distribution,

£ a V) = xgv), J g(vdv = 1, (11)

unperturbe

where k is the number of particles per unit length along x, and where

2
k= LkK. (12)

w
We have assumed that the kernel K(x) is an odd function of x and have expanded
it in a Fourier series:

K(x) = T ZI(k sin kx . (13)
k=2mn/L

For the coulomb kernel 1(a; for plain sheets, kKk has the constant value

KK, = czll.uco. (14)

71




G oo

T

Symon, Marshall, and Li

and w is independent of k and is just aqual to the plasma frequency

mkz = %2 = lcoz/ueo = nez/leo. (15)

For finite thickness sheets, the Fourier coefficients of the kernel have the
value (14) for long wavelengths, but approach zero for wave lengths shorter
than the thickness d. For the kemel 1(c), the quantity kKk falls to zero
for both iong and short wavelengths; we may in this case define th: plasma
frequency by the formula (12) for the value of k for which klf.k is a maximum.
Throughout this paper we will assume that the motion of the particles
may be computed by using the standard leap-frog algorithm, We divide the time

axis into intervals t according to

t, =nt. (16)
The positions x are to be calculated at integer time points t and the
velocities v at half integer time points. The leap-frog advancement algorithm

is then

Yoy Viney * A0gn)Ts
a7

Game1 T Sn Yy neg®

II. BIT-PUSHING PROGRAMS

Let us divide the fundsmentcl period L along the x axis into J intervals
each of length h, (L = Jh,, Let us likewise choose a maximm and minimum

velocity v which are relevant to a particular problem, and let us

sax’ Vain
divide the interval (v“x - lin) into I intervals each of length g,
(vm T Ig). The intervals h and g are to be chosen sufficiently

small so that they represent the maximum precision with which we care to
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specicy the positions and velocities of the particles. The phase space for
the problem is now divided up into IJ cells. We may locate any particle by
specifying the cell in whict its position and velocity are located. Con-
versely, we may describe the particle distribution by specifying the cells
which are occupied by purticles,

In a bit-pushing pro;iram, a rectangular array of 1J bits is reserved in
the memory, each bit correlated with a cell in the rectangular phase space.
A cell which is occupied by a particle is denoted by a one bit. A zero bit
denotes an unoccupied cell. This pattern of bits is then pushed according
to the leap-frog algorithmg (17). At a half-integer time step, each row
corresponding to a particular velocity is advanced in the x direction by an
appropriate increment vt. At an integer time step, each column correspondin
to a particular position is advanced in the velocity direction by an increment
at. Some time can be saved in the computation by utilizing the fact that at
a given time step all bits in a given row or column are advanced at the same
time and by the same number of intervals. Even more time could be saved in

a computer whose logic is well suited to pattern manipulation. Since the same

J intervals along the x-axis are used in calculating the acceleration field,
no interpolation or area weighting is required.

4 We have found it convenient to align words in the phase-space memory
bank along the velocity direction. That is, a complete word corresponds to
a group of phase cells having different velocities at a single position x.
The velocity increments at an integer time step can then be accomplished
simply by a series of shifts. Pushing a row in the x direction at a half-
integer time step rejuires an individual examination and manipulation of each

bit on present computers. Such an examination is in any case required to
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perform the sum appearing in Eq. (2) for the self field. In order to facili-
tate the caiculation of this sum, we store in a linear array of J words the
number of particles in each x interval (the density). When a row is to be
shifted at the half-integcr time step, we scan along the row, noting those
poiats at which there is a change from a zero to a one or from a one to a zero
bit. The appropriate succeeding bits are corrected and at the same time the
corresponding densities are corrected. Thus if we encouater a sequence of
empty or full cells we need make no changes until we come to the end of the
sequence. At each half-integer or integer time step the increment vt or at
is calculated according to the algorithm (17) and rounded off to the nearest
integer number of position intervals h or velocity intervals g, for each row
to be moved. If the round is unbiased and if the remainder is discarded, a
random error of h/y"§ or g// 8 (rms) is made in the position or velocity at
each half-integer or integer time step. This error can be reduced by
accumulating the rounded off remainders for each row and column and adding
the accumulated remainders to the calculated increments at the next time step.
A particie which stays in a given row at a particular velocity then suffers
no net position error during successive position increments until it is shifted
to another velocity row, whereupon it suffers an rms position increment h//6 .
This procedure reduces the round-off error considerably in those cases where
increments in position or velocity per time step are of the order of or less
than one interval h or g. There is little improvement when the increments are
many intervals per time step.

A similar scheme has been used by Miller and Prendergastl in the simulation
of many-body problems in galactic astronomy. Miller and Prendergast avoid the

round-off error by choosing position, velocity, and time increments so that
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gt = h. All position increments are tRen integral smltiples of h, Miller and
Prendergast quantize the forces so that at is always an integer multiple of g.
The round-off error then effectively appears only in the quantization of the
force. This procedure seems to place very severe restrictions on the choice
of parameters unless a very large nusber of phase cells is used.

A little reflection will show that the following theorem is true:

Theorem. A bit-pushing program with J = 2j position intervals
and I = 2i velocity intervals is precisely equivalent and will
give identical results to a conventional particle-pushing
program in which the positions and velccities of the particles
are stored as fixed-point numbers of i and j bits respectively.
If the same round-off procedures are used in both cases for the
position and velocity increments, then the round-off errors will
also be the same.

If floating point numbers are used for the positions and velocities in the
particle-pushing code then the equivalence is not precise, but it is still
very close if the numbers of significant bits in the positicn and velocity
are j and i. If we assume that the precisions j and i in position and velocity
may be freely chosen, then once they are chosen and once the number of
particles has been chosen, it is eatirely a matter of economy in memory space
and in computing time whether we choose to push bits or to push particles.

The number of memory bits required to store the particle distribution in

a bit-pushing program is

= 21, 18)
Nop (
The number required to store the same information in the corresponding particle-
pushing program is

Npp = Np(in ), (19)

5




Symon, Marshall, and Li

where Np is the number of particles. So far as memory space is concerned,
the bit-pushing program will be more economical then the particle-pushing

progran when the ratio

N N
“55 = (i+)) ;{1}; (20)

is greater than one. Bit-pushing programs are generally run with a mean

particle density per phase cell N/2'*J of the order of 1/3 or 1/4, and

with i + j of the order of 15 to 20. Under these conditions, the bit-pushing
program is evidently more efficient, as might be expected. Conversely,
particle-pushing programs are normally run with i + j of the order of 50 and

with N of the order 212 or more. Under these conditions, the particle-pushing
program is more efficient, and a bit-pushing program would be out of the question.

We are also interested in comparing the economy of time., The relative
computing time for the two programs depends rather sensitively upon the
computer which is used, and in particular upon the machine-language vocabulary
which is available. One might imagine an ideally flexible computer in which
computing time would be strictly proportional to the number of bits to be
manipulated. Although this ideal is not very closely approximated with existing
comput2rs we will confine our comparison of the two programs to the number of
memory bits which must be reserved in each cuise, and assume that the computing
times required will be at least roughly proportional.

Let us imagine an ideal computer in which the word lcngth is entirely
flexible, For a given total storage capacity Npp in a particle-pushing
program, we are then free to trade off the word lengths i and j against the
number Np of particles to be followed. In most computers this trade off can
in fact to a considerable extent be made by using word packing teciiniques. We

may then ask the question, for a particular problem to be simulated, what is
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the optimum trade-off among these parrmeters., If we could answer this question,
we could then compare the numbers Npp and Nbp to determine for the optimum
case whether a bit-pushing or a particle-pushing program wouid be more
efficient, Unfortunately, we do not as yet have any satisfactory answer to
this question, The following paragraph presents a prelimin.ry approach.

Let us consider a problem in which the relevant phase space is divided
up into Zi’j cells, (see Fig. 2j). Let us assume that the smallest relevant
phase element for the problem to be simulated, that is the size of the smallest

bundle of particles to be distinguished, is a rectangle of dimensions §v. Let

the entire phuse rectangle be divided into k& elements of area {v, where

L= 26, v - v kv (21)

Let the total time period during which the system is to be followed be T = nr.
1f an unbiased round is used for the position and velocity increments and if
the remainders are discarded, the rms error in position and velocity of a

particle at the end of the calculation due to round-off errors will be

o, = hn%//1;, o, = gn%//'-. (22)

v

vma)+-

min

Fig. 2. Relevant element in phase space.
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The number of bits in the phase element £y must then be at least

Ev/hg > 2/ 6, (23)

if round-off is not to carry a particle out of the element fy. If the
minimm relevant particle density is flin’ and if we wish to determine this
density to within an rms fractional error -, then the minimum number of

particles in the phase element must be

2
Evy = 1/p°. (24)

Let the ratio of the mean overall phase density f to the rinimm phase density
be

Ry = E/€; . (25)

The minimum number of particles which must be followed is then

2
Np = kg Rl/p 0 (26)

If the ratio of the maximum to the mean phase density is
Ry = ¢ /5 27
then the maximum number of phase cells in a phase element £ must be at least

gEv/hg > gvf.ax = RlRZ/pz. (28)

We have then for the required number of phase cells, depending upon whether

we take the limit given by equation (23) or (28) (whichever is great:r),

kon/ 6, for (23), or
= 2 (29)
klRlRZ/p , for (28).

i+j

Correspondingly, the ratio (20) is given by
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6 R
1en, (k&n/ 6), for (23), or
np? 2 (30)

N
fl’.:
P 1 2
ﬁ; 2n2 (k£R1R2/p ), for (28).

If for example we choose p = 1/8, R1 = R2 =2, k=2=8, n= 256, then
Eq. (28) is the appropriate limit, and we find Npp/Nbp = 7, so that the bit
pushing algorithgwould appear to be more efficient in this case. For these
parameters, we find Ev/hg = 256, 2'*J = 16,384, i = j = 7, N, =8, 192 As
the number of time steps to be computed increases, the limit (23) will
eventually prevail, and we can then see from formula (30) that for a sufficiently
large number of time steps the particle-pusining program eventually wins out.
The reader may enter his own numbers and juggle the formulas.

Some preliminary observations of the two stream instability have been
made with the bit pusher.2 The Coulomb kernel (Fig. la) was used, The phase
space was 216 x 216 bits square, for a length of 38 AD. A total of 15,500
particles, approximately one third of the number of cells, were used. The
length of the runs was 9.6 Tp, where Tp = 2nwp'l. In Fig. 3a, b, and ¢ we
shcw total and potential enexpy vs time for three different time steps,
approximately 0.1 Tp’ 0.05 Tp’ and 0.025 Tp. These runs were made on a univac
1108, using approximately one, one and one half, and two minutes of computing
time, respectively, not including time to output xesultg.

Initially all phase cells in velocity rows $19 to t54 were filled, to
give two uniform rectangular beams, and rovs *18 were half filled randomly to
provide a spatial density perturbation of 1.3%. For the large timc step,
note the oscillation in total energy. This has an amplitude of ~1% of the

total enerqy, or v20% of the variations in potential energy. The oscillation
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is caused by truncation error, and its amplitude is proportional to 12. As
the time step is reduced, he oscillation disappears and a steady growth in
total encrgy appears, This growth is due to increasing round-ofi errors,
and is proportional to the number of time steps. The round-off also causes
an apparent damping of the nonlinear oscillations, for the smallest time step.
As the round-off errors accumulate, the potential energy is reduced due to a
"smearing" cf the density. At the same time, “smearing" in velocity space
causes the kinetic energy to increase. The sum of these two effects appears
as a growth in total energy. The time step 0.05 Tp represents the best compro-
mise between truncation and round-off errors.

Methods of removing the order TZ truncation error are now being investi-
gated, If this error were removed, a larger time step could be used,

resulting in further reduction of round-off errors,
111. DISTRI1BUTION-PUSHING ALGORI THMS

Let us assume that for a particu'ar problem to be simulated, the leap-

frog algorithm(17) with an appropriately chosen time step has adequate accuracy.

Let us then replace the actual system of particles moving according to Eqs. (1)
by a system of leap-frogging particles moving according to Eqs. (17). The
Vlasov equations describing the behavior of a system of leap-frogging particles

are

fren, (V) = £ (x,v-a ()T),
(31)

3 fn§l(x,v) = fnoa(x-vT,v),

where a(x) is given by Eq. (9, ind the subscript refers to the time (lq. (16)).

p—
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We have now sepavated the problem of discretizing the time, a problem which
is presumably reason.hly in hand and need receive no further consideration
in the present treatmen:.. from the problem of following a very large number
of particles whick is stiil with us in Eqs. (31) and which is by no means so
well in hand, We assume then that if we can find a satisfactory way of
solving Eqs. (31), the result will be a satisfactory solution of the Vliasov
Eq. (8) correspording to the differential equations (1).

In order to find a computer simulation method for Eqs. (31), we must
first choose a way of specifying the distribution function f(x,v) by means
of some finite set of numbers which can be stored in the computer. We assume
that a set of parameters has been chosen suited to the problem to be simulated,
the number of parameters being large enough to specify in adequate detail the
distribution function f(x,v), and small enough to be stored in the computer
memory (104 words for example). We assume further that a rule is given where-
by to any particular set of values of these parameters, there corresponds a
specified function f(x,v). As an example, a suitable set of basis functions
may be chosen in terms of which to expand the function f(x,v), and the coef-
ficients of perhaps 104 terms in this expansion may be taken as the parameters
to be stored. Since a complete set will contain an infinite number of basis
functions, in order to specify uniquely the function f(x,v), it will be
necessary in addition to give some termination rule whereby from the 1()4 given
coefficients the remaining coefficients in the expansion may be determined. A
common rule, though not a necessary one, is simply to truncate the series,
that is, to specify that the remaining coefficients are to be taken as zero.
A second method of choosing the paiameters is to set up a grid of perhaps 104

poin*s in the x,v phase space and to choose as the parameters to be specified
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the values of the function f at these grid points. Again the function f(x,v)
is not uniquely specified by these values until we have given an interpolation
rule vhich specifies the function at all points in the phase space. Note that
we are requiring that a specific function f(x,v) be uniquely specified by a
particular set of values of the parameters chosen. Since there are only a
finite number of parameters, the set of functions which may be so specified
will by no means include all possible functions, or even all continuous or
analytic functions, but will be instead a particular family of functions
specifiable by the given finite set of parameters according to the given rule.

A function belonging to this set we will call a representable function.

Although not every possible distribution function is representabie, if the
method of representation has been well chosen, then presumably for any dis-
tribution function f(x,v) whica might occur in the problem to be simulated
there is a representable function which is sufficiently close to it, in the
sense that the two functions would lead to the same present and future behavior
of the system so far as the phenomena to he studied are concerned and within
the required accuracy. It is in this sensc that we have rcquired that the
representation method chosen be suitable to the problem to be simulated.

Since a satisfactory experiment must produce repeatable results, and
since the number of parameters which would need to be controlled in an experi-
mental situstion in order to repeat the experiment is probably considerably
less than the information storage capacity of a modern computer, wec may at
least hope that suitable methods of representation in the above sensc can
indced be found. This plausibility argumcnt is not an existence proof; it
might for example turn out that in order to know whether two distribution

functions are sufficiently close to be represented by the same representable
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function, we would need already to have solved the simulation problem, In
any case it would seem that the method we are suggesting provides a very great
degrec of flexibility. It even includes the particle-pushing methods, since
one possible choice of parameters would be to choose, either at random or
othervise, a finite sample of the particles in the system to be followed and
to specify the positions and velocities of this set of particles. The dis-
trihution function could then be defined by regarding these at any given
moment as a random (or otherwise) sample in the set of all particles, From
this point of view, particle-pushing does not appear to be very efficient,
since because of statistical fluctuations the precision with which we can
define the distribution function is considerably less than if we used the
swme number of parameters in an expansion schexe or an interpolation scheme
between grid points.

Let us assume that at a particular time t, ve have stored the values of
a set of parameters which specify then a particular distribution function
fn(x,v). The first of Eqs. (31) then specifies uniquely the distribution
function which follows at time tn.¥. Unfortunately, if fn(x,v) is a repre-
sentable function, then in general fm;,(x,v) is not necessarily also repre-
sentable, 1t is possible to find representation schemes in which the second
of Eqs. (31) leads from one representable function to another, hut it is
almost certainly impossible to find a representation scheme in which each of
these equations leads from one representable function to another, We do not
know of a proof of this impossibility, 'ut it is clear that if such a repre-
sentation scheme exists, then we can find exact solutions of Eqs. (31) valid
for all times, an unlikely picce of good luck except foz very specialized

problems. We are faced therefore with the problem of choosing a suitable
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representable function with which to replace the function given at any par-
ticular time step by the formulas (31). 1f the representation we have chosen
is suitable in the sense defined above, then it should be possible to find a
suitable replacement rule. Either of Eqs. (31), together with a replacement
rule, will lead to an advancement algoritim for converting the parameter values
at a given time to the parameter values at a time !yt later, The best replace-
ment rule will be some sort of compromise between the requirements of accuracy
and speed of computation.

It is just in the replacement rule that an approximation enters into the
distribution-pushing schemes. (Recall that we have already disposed of the
spproximation involved in the lea - frog algorithmitself). Note however that
the approximstion is one whiin is completely within our contrul. Equation
(31) tells us precisely wiat the new distribution function should be. The
replacement rule tells us with precisely what function we have r -placed it.

We therefore know at each time step precisely what error we have made in the
distribution function. 1f, for example, we require that the replacement rule

be such that it at least preserves the total number of particles, then the
representable replacement distribution may be obtained from the correct dis-
tribution given by Eq. (31) by moving each particle from its position in the
latter distribution to its position in the former, (The set of particle dis-
placements required is of course not uniquely determined, but there is presumably
a set of displacements for which the rms displacement is a minimum.) We may

then say that the particles in the distribution-pushing algorithm move according
to the Eqs. (31) but in addition suffer at each time step a small error displace-

ment, The characteristics of the crror displacements can be determined by
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studying the replacement rule. One might try to minimize the rms error dis-
placement in choosing the replacement rules, although this goal seems to lead
.n practice to rather formidable algebraic problems. Alternatively, one may
place certain plausible physical requirements and certain convenient computa-
tional requirements on the replacement rule, sufficient to determine the
advancement algorithm.

1t has been the authors' admittedly somewhat limited experience that
the numerical analytic methods of developing difference equations fcr approxi-
mating the Vlasov equation (8) lead to errors whose physical nature and zon-
sequences are often difficult to determine, although of course the magnitude
of the errors at any given time step is known. In contrast, our experience
with the development of algorichms following the distribution-pushing philosophy
has been that one usually has considerable physical insight into the nature
of the approximations being made. We have indeed had very few surprises;
methods which we predicted in advance would have unacceptable errors indeed
turned out to have such errors, and more important, methods in which these
errors were supposed to have been removed indeed turned out te produce satis-
factory results. A study of the replacement problem, or of the representation
problem which preceeds it, usually leads to an insight into the nature of the
errors involved in any given procedure and into ways in which these errors can
be reduced. We wiil give an example below.

1t can be shown t it the grid interpolation schemes and series expansion
schemes are essentially the same in the following sense. Given on the one hand
any set of N grid points in the phase plane and an interpolation rule which
defines the function f.«,v) everywhere in terms of its values at these N grid

points, and given on the other hand a set of basis functions in terms of which
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a function f(x,v) can be expanded, we can find a corresponding termination
rule which tells us, given N coefficients in the series, how to find the
remaining coefficients., The correspondence is such that the set of repre-
sentsble functions is the same in both cases. The choice between the two
methods is thea a matter of mathematical and computational convenience. In
this paper we will confine ourselves primarily to grid interpolation repre-
sentation schemes. Although more general grid arrangements are under study
and have advantages for many kinds of problems, we will confine ourselves
here to rectangular grids of points. Let us take a rectangular array of N=1J
grid points located at the positions given by all combinations of the following
values

xj = jh, jwl,..., J,

-y . . = l
v D + ig, 1 Lsleore » Iy (3

= f
Vaax * Vmin * de g .

We will take the system to be periodic in x with period L = Jh, and we will

assume that the distribution function vanishes for v > L and for v < Vain®
We now show that it is possible to treat separately the interpolation

problem for x and for v, and still achieve a fairly high degree of accuracy.

Let us assume that we have an interpolation 1ule in x which defines the

function f{x,ig) on the horizontal grid lines in the phase space. (See Fig. 4).

ﬂh—*

Fig. 4. Advancement shears the phase space.

89




o A

Symon, Marshall, and Li

Let us further assume that we have found a suitable advancement algorichm for
the second of Eqs. (31) or the horizontal grid lines, so that we can represent
precisely, or at any rate with sufficient accuracy for our purpose, the function
f(x - ih® ,ih) for any value of i. Let us further assume that we are inter-
polating linearly in v between the horizontal grid lines. The effect of the
second of Eqs. (31) is to produce a linear horizontal shear in the phase

space. The points marked o in Fig. 4 which were initially in the same vertical
line, one at v = ig, the other one at v = (i + 1l)g, will after the shear be

on the same horizontal line but displaced in x by an amount ch, where
a = gr/h, (33)

Consider now the point marked + in Fig. 4 on the line joining the two points
oat v = (i + B)g. The correct value of f at this point after the shear is

to be linearly interpolated between the values fi+1 and fi at the two points
o. This value will be replaced by a value linearly interpolated between the
points directly above and below the point + on the two Lorizontal grid lines,

The error in this process is readily calculated to be

Af =€ - £ to8(l-g)h S(f

corr = repl 9x £ @)

i+l i

where we have kept only the linear term in a Taylor series for f(x) along
the two horizontal grid lines about the points o. If we average the above

result assuming that 8 is equally likely to be any wherc between zero and one,

we find
,
< s ah oo . ohg 3°f
aaidh f AU 4 - ()

If a is not too large, say a < ';, then the error is less than or of the order

of 5% of the difference between the function values at adjacent grid points and
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is therefore presumably of the same order of magnitude as the error involved

in replacing a physical distribution function by a linearly interpolated

function, a replacement which we have assumed above is suitable., It is N
furthermore worth noting that the error (35) vanishes if integrated horizon-
tally aiong any horizontal line or if integrated vertically along a vertical
line in the phase space. Therefore the distribution in x, (If(x,v)dv), and the
distribution in v, (Jf(x,v)dx), are not affected by the error. In particular,
neither the kinetic energy nor the acceleration fields nor the potential

energy are affected by this error. Although the above result was derived
assuming a linear interpolation in v, it is presumably correct in order of
magnitude for any reasonable interpolation rule in v. A similar argument
applies to the replacement problem associated with the first of Eqs. (31).

We therefore direct our attention to the problem of finding suitable replace-

ment algorithm for functions of a single variable x or v, We should keep in

mind however that the Taylor series in x used in the derivation of Eq. (34)
is not generally valid for typical interpolation rules on x, so that the
result expressed by Eq. (35) is only an estimate of the error. Furthermore
the difference between this estimate and the true error will not in general
have the property that its integral along a line parallel to either the x-
or the v-axis vanishes.

Let the period L along the x-axis be divided into sub-intervals of length
h according to the first of Eqs. (32). Let an interpolation rule be given for
finding a function f(x) when its values at the grid points are given. We

define the interpolation function G(x) as the function obtained from the piven

interpolation rule when the function values are specified to be fj = Gjo. As

>

Fig. 5. Interpolation function for linear interpolation.
91
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an exsmple, we show in Fig, 5 the interpolation function for linear .nterpola-
tion. Any interpolated function f(x) can be written in the form
J
f(x) = I ij(x - jh). (36)
j=1
If f(x) passes through the values fj at the grid points, the function G(x)
will have to have the property

G(jh) = Gjo' 37)

It is usually desirable that the interpolation procedure be such that it
yields a horizontal straight line when all the function values f f are equal,

This entails the condition
J

IG(x - jh) =1, (38)
j=1

In view of the periodicity requirement, the function f may be Fourier

analyzed:

f(x) = ¢ 'l\"',’ e 55— - ' (39)
im0

The Fourier coefficients are given by

v 1 J‘m _ 2mifx
F,' * I f(x)e Jh dx = F(I)Gl’ (40)
0

where C, is the Fourier coefficient of G(x) defined by

L

sJh _ 2mitx
G!. = %-I G(x)e Th dx, (41)
-l’Jh

and F, is the Fourier point transform of the function values f.:

j
2nis
J ‘frl'
Z fje 3 (42)
j=1

L

1
F!.I
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f.= I F.e 43)
by
The function F!, is periodic in £ with period J, so that we may restrict
the values of £ to lie within a single period, say from -}J+1 to %J if J
is even, and from -}J+) to 4J-% if J is odd. This is the meaning of the
parentheses around %J in Eq. (43). The parentheses around the subscript ¢
in Eq. (40) remind us that the coefficient F(z) is periodic in £, although
the coefficient Gl, is not. We see that instead of defining the function
f(x) by giving its J values at the grid points and interpolating between
using the function G(x), we could alternatively define f(x) by giving J of
its Fourier coefficients ?!,’ and then using Eq. (40) to provide all of the
remaining Fourier coefficients. We thus see that any interpolation 1le on
a mesh is equivalent to a rule (40) for terminating a Fourier series, in the
sense that both yield the same set of representable functions.

The moments
g 4 £ (x)dx (44)

of an interpolated f(x) are given by the formula

m _ " (k) o k
f = I G h)'f 45
ooy K0T U e b
where G(") is the nth moment of the interpolation function, defined also as

in Eq. (44). It will be useful to record here the moments of the interpola-

tion {unction for linear interpolation shown in Fig. S:

6@, ¢ .o, 6@ . nYs, (46)
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For purposes of illustration, let us consider the simplest possible
approach to the replacement problem. Let us assume that we are using linear

interpolation and that we wish to find a replacement rule for the function
f.(x) = f(x - oh), (47

where we may assume [a| <%, since if a is an integer, we may make the

replacement exactly, simply by setting
£f.=f . (48)
A simple way to obtain a replacement rule would be to set

frj = f.(jh) = £(jh - ah), (49)

so that the interpolated r« ‘lacement function fr(x) coincides at the grid
points with the correct function fc(x) which it is supposed to replace.
It is a simple matter to calculate fri from Eq. (49). 1If a is positive,

the result is

f j = (l-a)fj + af (50)

r j-1°
The function fr(x) is certainly not equal to the function fc(x) which it
replaces. For example, we show in Fig. 6 a sketch of the situation for

the case when f(x) = G(x) and a = 1/3. One can readily verify that the

Fig. 6. Spreading of f(x) with two-point advancement algorism,
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zeroth and first moments of the function fr(x) agree with those of fc(x),
so that th> total number of particles and their mean positions in the two

distributions are the same. The second morents are however

fc(Z) . f e esoh)dx = f (x+ah) 2 £(x)dx

£, 2ane (D 4 242600 (s1)

! NLG? + D ot o 2anif, + 13%0,
i JJ .j PREE |

f ] J
!
@ _,3r1 e
fr h [6 gfrj ; J frj]
3 J (52)
3 1 Sy b
= h"[(a + P . ¢ Iif. + Ij f£.].
j J j J j J
The difference is
; @ =g B ¢ B2 gqean’, (s3)
If we assume o is equally likely to have any valuc between 0 and %, the
average difference is
£ < w32 . (54)

Since the difference is positive the replacement distribution is more spread
out than the correct distribution fc(x), s is also evident frow Fig. 6.
According to our previous discussion, the distribution-pushing advance-

ment zlgorittm for the second of Eqs. (31) requires us to displace horizontally

the function f(x,ig) along each horizontal grid line by an amount ch = vr = igr.

For each grid line, we use the rule (48) to displace the function by an amount
equal to the nearest integer to a, and then use the replacement rule (50) to

displace the function by the fractional part of a. We follow a similar
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procedure to obtain the algorithm for the first of Eqs. (31) by displacing

the distribution function along the vertical grid lines, Equaticn (54) ther
tells us that the resulting algorithe is equivalent to moving each particle
according to the leap-frog equations and subjecting it in addition to a
random walk at each time step of mms step h//IZ in the x direction and g//I7
in the v direction. Such a random walk leads to an unacceptable spreading

of the distribution function for a reasonable number of time steps unless the
grid spacings are taken unreasonably small.

Since the effect resvlts from the way we are solving the Vlasov equations
(31), and not from the self-field calculation (Eq. (9)), we may study it by
studying a system of particles sudject only to an external force field a,,
without any interaction Letween them. As an example, we have used the above
described advancement algorithm to find the distribution fuaction for an
ensemble of harmonic oscillators.3 A grid of 1J = 91 x 91 mesh points was
taken, The numbers were so .hosen that the orbits in phase space are circles,
with 60 time steps required for one complete cycle. The initial distribution
funccion at t = 0 was taken to be zero at every grid point except the point
a=0, vs=30g. where it had the value 42 (per cell gh)., The results after
15, 30 and 60 time steps are shown in Figs. 7a, 7b and 7c. At each grid point,
we print the nearest integer value to fij’ except that if fij < 0,1, we do not
print anything. As predicted, the distribution function spreads out rapidly.
Already after 15 time steps the maximum value has dropped from 42 to 3. The
distribution after that continues to spread, but more slowly, in proportion
to the square root of the time, Th: center of mass of the dist-ibution moves
correctly around the circle. We offer our apologies for the fact that the
function values are printed sideways on the graphs. It is pcchaps too severe

a test to start with a single non zero function value fij; in Fig, 8 we show
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the initial and final distribution in spatial density after a complete cycle
for an initial distribution dist.‘\buted uniforamly over a vectangle in the
phase space of area 17 h x S g. The spreading is still unacceptably large.
In order to reduce the spreading, let us seek a replacement rule for
the function fc(x) in Eq., (47) which preserves also the second moment., We

will also generalize the interpolation scheme by requiring only that
6 «n, ¢ a0, g2 .03 (s5)

where a2 is some number, which for linear interpolation it 1/6. Let the

replacement rule be

fl“j = f'lfj',..

where the sum over 1 must contain at least 3 terms if we are to preserve 3

(56)

moments. The condition that the zeroth and first moments be preserved in the

replacement is readily shown to be

’31‘: =1, (57)

Lta, = a, (58)

These cnonditions are evidently satisfied by the simple replacement rule (50).
The second moments are calculated in a manner similar to those in Eqs. (51)

and (52), and are

£ )L w3r? - oDyzs, o 2anif, ¢ 53060, (59)

@) | p3ro? it%a) L Ita, L 5yl
f‘_ h“[(o fal + 2!. a,) ’fj * 2!"1 j)f’ . !l:,."j’ fj]

(60)

i

= b3 . leal)lf . 0Lyt o zjzfj].
L j 3 j
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where in the last line we have used Eqs. (57) and (58). The condition that
Eys. (39) and (60) agree i- that

£ 2232 =\ (61)

)
Note that tlis condition is indepcndent of the choice of interpolation function!

An algorithm satisfying Eqs. (57), (58) and (61) will preserve the moments of
the distribution function through the second regardless of the interpolation
scheme used. If a non-uniform spacing of grid points is used, then it is no
longer true that the advancement algorithm 1s independent of the interpolation
rule. A small term depending on the interpolation rule also appears if we
take into account both the x and v dependence of f(x,v) in working out the
i advancement algorithm.
; A similar result applies if we require that higher moments be preserved.
It does‘not appear to us however that there is any particular advantage in
preserving the higher moments, Rather it seems to us that it is desirable
to use as few terms as possible in the replacement rule (56), This nct only
shortens the computations, but it means that changes in the distribution
function at a certain point are affected only by its nrirest neighbors at any
given time step. If our only object is economy in memory space (and tire),
then it would seem that we would want to use as large a grid spacing as
possible. This means that the grid spacing will be of the order of or per-
haps somewhat smaller than the smallest identifiable group of particles in
the phase space. With <uch a large grid spacing, it does not seem plausible
i that either the interpolation scheme or the advancement algoritim near a given
grid point should reach very far from that grid point. If we then keep only

the thiee terms £ = -1, G, 1, Eqs. (57), (58) and (61) have the solutions




Techniques for Solution of Vlasov Equation

8y =1-d,

a =@l + a), (62)
a_; = -al - a).

Note that the replacement rule given by Eqs. (62) guarantees the pre-
servation of the moments of the distribution function through the second
no. matter what the values of fj may be. .This means that this advancement
rule, starting from any interpolated distribution function £(x) in Eq. (47),
does very much more than simply preserve the first three moments of fc(x).~
For we may resolve the original function f(x) in any fashion into a sum of.
component interpolated functions, and our advancement rule guarantees that
the component replacement functions each have the prozer first three moments.
in this serse, we may say that this replacement rule preserves the number of
particles, the mean position, and the rms spreac of every component part of
the distribution fc(x). If we develop an advancement algorittm for the Vlasov
equations (31) based on the replacement coefficients (62), then whatever the
errors introduced in the distribution in each time step, they cannot corres-
pond to an independent random walk of each particle in the distribution,
since the rms steps in such a walk would have to be zero, Instead, the error
displacements of the particles at each step are correlated in such a way that
although the new distribution is not quite the same as the old, its mean and
standard deviation, and indeed the means and standard deviations of each
component part, are pruserved.

It is evident from Eqs. (62) that except in the special cases a = 0,
%t 1, at least one of the three coefficients will be negative. This means

that it is possible, starting from positive valucs of all xj, to arrive at
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negative values of some of the frj‘ The function fr(x) will then not be a
true distribution function. This is perhaps not surprising, since we have
legislated that the second moment shall not increase under the replacement,
and in fact shall remain constant even under repeated displacements. Yet

it is evident that if we start from a distribution function which has only
one nonzero fj' then unless the advancement algorithm (56) contains only one
term, the replacement functions obtained by repeated application of thc rule
(56) will contain a region of nonzero values which increases in size linearly
with the number of repetitions of the advancement., In the case of the rule
(62), the distribution of nonzero values spreads out one interval h in each
direction at each advancement. The replacement algorithm (62) neatlvy avoids
increasing the second moment of the distribution by inserting negative values
frj on the wings of the distribution. The negative values occur only on the
edges of the distribution function and are small except when there are abrupt
changes in the function f(x). The appearance of negative values can be
avoided altogether if certain restrictions can be placed on the initial dis-
tribution function. In particular it is sufficient, though by no means
necessary, to require that the functirn valuss fj at neighboring grid points
never differ by a factor more than e. (The factor could be as large as 5.8).
There is of course no gusrantee that if we start with a distribution function
which meets this requirement, the advancement algorithmwill never lead to a
function for which it fails. In practice we have found with a program using
a three point advancement algorittm for the Vlssov Eqs. (31) based on the
replacement rule (62) (with always lal < k), that if we start with such a

distribution then only a few very small negative values fij ever arise.
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Tt is interesting to note that if we use parabolic interpolation, then
the above replacement rule leads to a function fr(x) which coincides with the
correct function fc(x) at the grid points. In parabolic interpolation, we
interpolate the function out to h on either side of a given grid point by
passing a parabola through that grid point and the two neighboring points,
The resulting function is in general discontinuous at the »id points. The
interpolation function is shown in Fig. 9. Figure 9 makes it clear why the above
replacement algorithmcan give negative values for frj’ since with parabolic

interpolation the original interpolated f(x) itself can have negative values

even though none of the function values f} is negative, It is not difficult
to determine conditions on the function values fj so that parabolic interpo-

lation does not lead to negative values, It is in this way that we arrived

at the conditions under which the replacement rule (62) does not lead to
negative values. We emphasize again that we may use the replacement rule (62)

with any interpolation procedure.

G(x)
7™

-2h ~2h -h h zh 3h

Fig. 9. Interpolation function for parsbolic interpolation.
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In Figs. 10a, b, c, and d we show the results of a calculation for the
moiion of an ensemble of harmonic oscillators using a distributicn-pushing
advancement algorittm based on tae replacement rule (62). The probler is
the same as that shown in Fig. 7 except that the initial distribution shown
in Fig. 10a is tapered exponentially away from the central grid point at
x =0, v=30 g, where it has its maximum value 9. Figures 10b, c, and d then
show the resulting distributions after 15, 30, and 60 time steps. It will be
seen that the spread in the distribution is very slight, The dots in the
figure represent negative function values between -0.1 and -0.5. (For larger
negative values, our program prints a minus sign.) Figure 11 shows a com-
parison of the initial and final distributions in x after one complete cycle,
for a rectangular distribution similar to that shown in Fig. 8, except that
the distribution at the edges is tapered down exponentially. We conclude
from these results that this three-point distribution-pushing algoritm can
give satisfactory results.

Encouraged by these results, we set up a program of this type to solve
the Vlasov equation with an acceleraticn field kernel of the form shown in
Fig. lc. We chose the opposite sign to that shown in Fig. lc so as to provide
an attractive force to sirulste the negative mass instability. The usual
stability conditions, linear growth rates, and nonlinear bunching now are
observed. Contour plots of the density in phase space are shown in Fig. 12,
Figure 12a shows the initial distributicn in the phase space consisting in a

beam with a sinusoidal density pertuibation. Figures 12b, ¢, d, and e show

the results after 1¢, 20, 30 and 50 time steps. A striking feature, particularly

of the later plots, to one who is used to seeing results from particle-pushing

programs, is the uniformity of the three vortices which develop. The initial
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F.g. 10b. Phase density after 15 time steps.
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Phase density after 30 time steps.

Fig. 10c.
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Density after 30 time steps.

Fig. 12d.
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perturbation is purely sinusoidal and contains three periods in the length L.
The result after 50 time steps shows three well developed identical vortices.
The identity of these vortices even down to the firest details is a sympton
of the lack of statistical noise in a distribution-pushing program in con-
tra*t to that which results from a particle-pushing program.

The mesh used in this calculation was 61 velocity grid points by 100
position grid points. The time step was such that gt/h = 0.1. The beam has
a rectangular velccity distribution with tapered edges, of width equal to 12
mesh units in the velocity direction plus a sinusoidal perturbation of
amplitude 2 mesh units, The total time to do the calculations shown was
three minutes on a CDC 3600, or about 1/3 of the time required by a bit-
pushing program to do the same problem (with essentially the same results),

It is of interest to ask whether an interpolation rule e-ists for which
the translated function fc(x) in Eq. (47) is itself representabl:, This
question is easily answered if we go to a representation by Fourie: series,
If £(x) is given by Eq. (39), then the Fourier coefficients of the tra.slated

function (47) are 2nita
n N )
Faa=Fye |

If J coefficients ’l\;l

given which determines the rest, we require that the same rule determine also

are given, (say -}%J < £ < %J) and a termination rule is

the remaining coefficients ?;cz‘ This can be true for all a only if the rule
is that all the other coefficients vanisn (except for £ = -l if J is even).
The set of functions whose Fourier transform has only J non-vanishing coef-

ficients goes over into itself under the translation (47). We see from

Eq. (40) that the trensform G" of the corresponding interpolation function

has exactly J non-vanishing coefficients. Any such function G(x) inserted in
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Eq. (36) defines the same set of representable functions. If we require
a
that f(jh) = fj' then Eqs. (39) and (43) show that Fz = F2 and

Gy = 1if |8] $%J, G, = 0 otherwise

The required interpolation function is therefore

Clx) = Sin(u/h)

J sin{mx,

For an infinite period, Jh + =, this approaches the familiar function
6(x) = sxn#:x/h) ,

which provides an interpolation rule on an infinite interval which gives a
set of representable functions which goes into itself under translations., We
have experimented with the use of this kind of interpolation rule, but it does

not seem to offer any decided advantages.
IV. A ONE AND ONE-HALF DIMENSIONAL PROBLEM

As a final example, we present briefly the results of a simulation of a
1% dimensional problem using the distribution-pushing algoritim described in
the previous section.4 The problem was suggested by an experiment conducted
by C. Stallings.5 In the experiment a beam of plasma is shot from a gun
through a hole in a plate as shown in Fig. 13. The electrostatic potential
is measured as a function of the radius r from the axis, and the distance :z
from the hole. Rather complicated oscillations in potential are observed
as a function of z and of r. In order to simulate this problem, we assume
that ions coming out of the hole form a fixed uniform positive charge density

in a cylinder of radius R (the hole radius). We assume that the electrons all
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have the same z-component of velocity, so that z = v,t and we may use
either z or t as independent variable. We assume also that the wave lengths
of oscillations i1n the z direction are much greater than R, so that the
potential can be calculated as for a uniform infinitely long cylinder. Each
electron is then described by four coordinates and momenta r, T, 6, Pgys which
are functions of the time t, or alternatively of the coordinate z. If we
assume circular symmetry, then the distribution function f(r, r, pe) will be
independent of ¢ and the angular momentum Py is a constant of the motion.

We choose M fixed values of the angular momentum. (In our case M = 9).
For each angular momentum, we write the appropriate Vlasov Eqs. (31) in the
r, T space using the correct equations of motion for the radius r corresponding
to that particular angular momentum. The charge density as a function of r
is then calculated by integrating numerically over r and Pg: From the den-
sities the electric fields can be calculated which go into the equations of
motion as well as the electrostatic potential for purposes of comparison with
measured values.

We start initially with a uniform spatial density of electrons out to
the radius R of the hole, and with a Maxwellian distribution in velocity
space: 2

w2 e

£,(r, T, py) = LS W WKTZ g (63)

where n is the initial electron density per unit volume within the cylinder
and we have normalized the distribution so that the number of particles per

unit length is
R

J £ (r, T, Py drdidpe a nRzno. (64)
0
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After the beam travels away from the hole in the plate it will oscillate in
rndiusland the velocity distributions may not remain Maxwellian, An examina-
tion of the distribution (63) will show that if we desire to choose a minimum
number M of values of Py then the choice of values must be very carefully
made, if we are to be able to represent reasonably well the Maxwellian form
over a significant range of radii. The solution to this problem is perhaps
of some interest and we will therefore give the details in the next paragraph.

Let us assume that we wish to choose¢ 3 sequence of values of Py SO that
we can represent the final exponential factor in Eq. (63) about equally well
at all radii. At a given radius r,a typical value of Py which is important
in the exponent is

P, = ro(kaT);’. {65)

For values of Py much smaller than Py the exponential function is essentially
unity, and for values of Pg much larger than P, the exponential function is
very small, It is evideut that the detail with which we can represent the
Maxwellian functior. for this particular value r = T, is determined by the
relative spacings Ape/po of the values of Pg in the neigﬂborhood of Py In
order to represent the distribution equally well at all values of r, we

should therefore choose a geometrical progression of values for Py’

Pj = nJPO. (66)
where p i are the chosen sequence of values for Pg: N is a numerical factor,
and j is an integer which for the moment we allow to range over all positive
and negative values. In practice we found that we could choose n = 2 and

still represent the Maxwellian distribution with sufficient accuracy so that

integrals over p, calculated by the algorittm we are about to develop are
6
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accurate to about 0,1%. In order to develop an algorithm for integrating a

distribution function over pg, let us put

Py = P, 7
where
n=eéf, (68)
so that
= Bj
pj = Po® - (69)

If f(pe) is a distribution function, then we have

) o
[ f@gapg - | £agerap ety (70)
o s

Now the integrand on the right is known at integer values of y, as we see

by comparing Eqs. (67) and (69). It can be shown that the best possible

integration formula for integrals extending over the entire y-axis where

the integrand is known at equally spaced values of y, and provided nothing

else is known about the integrand, is no better than a simple summation of

the values of the integrand at the given points, We therefore have the

following algorithm for the desired integral:

(-]
-

- J

| fog)amy = oy i znley (71)
o

Since the initial distribution extends out only to r = R, the values fj

will be negligibly small for values of j for which pj is larger than about

twice the value given by Eq. (65) for B R. We may therefore set the

upper limit of the sum at this value of j. We choose for P, 8 value given
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by Eq. (65) with T, sbout one half the smallest value of r of interest. We
assume that the function f(pe) for Py < P, can be fitted with sufficient
accuracy by a parsbola passing through the values fo and fl at P, and P-
This assumption sllows us to calculate the values fj for j negative. The
sum over negative j in Eq. (71) can then be evaluated. The resulting
formula is

4
n t'o—nfl . ";;lnjf

0 (72)
n-D@>-1) o I

rf(Pe)dPe *Po tnn
o
We have found that with n = 2 and with M = 9, and with the Gaussian dis-
tribution (63), the formula (72) gives results accurate to about 0.1%,
The simulation program was run for 300 time steps of 2 x 10'9 sec

each. The initial electron density was 4 x 1012 l'3 giving a plasma frequency

"'p = 1,124 x 108 sec'l. The temperature was 2 eV, giving a Debye length
0.44 ca. The hole radius R = 1,25 cm. We show in Fig. 14a and b the
calculated charged densities as functions of time at two different positions
sad in Fig. l4c the potential as a function of time at one radial position.
The potential variations are of the same order and roughly similar to those
measwwed, except that the measured variations are not so regularly sinusoidal.
The messured frequency of the oscillaticis in density in Fig. 14a is 0.53%
less than the plasma frequency! Tie amplitude of the oscillations in radius
of the electron beaa is abouc 2 Debye lengths.

The calculations were carried out with a grid of 100 x 31 grid points in
each of the nine r, r phase spaces. The time required for the computation of

300 time sieps as shown in Fig. 14 was 22 minutes on a UNIVAC 1108.
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A Self-Consistent Electromagnetic Particle Code

I. Haber, C. E. Wagner, J. P. Boris, and J. M. Dawson
Naval Research Laboratory
Washington, D.C.

I. INTRODUCTION

In computer simulations of plasmas, difficulties often arise in
properly modeling physical problems. Plasmas in the physical world have
large system sizes with large numbers of particles having disparate
masses, Here many phenomena are assumed decoupled due to the widely
differing time and length scales characteristic of these physical para-
meters. In a simlation model, due to the finite size and speed of present-
day computers, it is often necessary to choose time and length scales
which are not as widely varied as those encountered in the physical world.
However, our understanding of the physics is greatly facilitated if all of
the physically decoupled phenomena under inveatigation remain decoupled in
our computer model.

In particular for particles ol differing masses moving in the presence

of electromagnetic fields, the electrostatic phenomena tend to scale as
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the square root of mass ratio while the magnetic phenomena scale directly
as the mass ratio. It is, therefore, often desirable in a computer code
to follow ion trajectories in the electrostatic approximation (large ion
Larmor radius) while following the detailed electron behavior due to the
electric and magnetic fields. This can be accomplished by decoupling the
electrostatic and electromagnetic mass of the lons. The Lorentz law

equation of motion,

& _E , oV xEB
dat m mc
e m

can te solved with the magnetic mass mm>> L The 1limit n 4> is
particularly interesting, for example.

A cimilar circumstance exists when the magnetic pressure becomes
comparable to the particle pressure (Bml). We would like to follow
the erfects of the self-consistent magnetic fields. However, for system
parameters amenable to computer simulations, the presence of the radiation
fields causes unnecessary complications. For reasonable numerical ratios
of electrostatic to electromagnetic energies, one finds an unphysical
buildup of the radiation fields via bremsstrahlung, In a periodic code
the radiation eventually reaches an energy balance with the particle
kinetic energies.

The code described here follows the orbits of simulation particles in
their self-consistent electric and magnetic fields, but neglects the trans-

verse displacement current term of Ampere's law, The ratio of
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electromagnetic to electrostatic fields may then be adjusted by changing
the constant ¢ in Maxwell's equations without a corresponding change in
the radiated fields. By making c smll, a large number of magnetic Debye
lengths (c/ o, o) can fit into a reasonable length system and the code can
be used to examine, from a particle viewpoint, problems such as Alfven
and magnetocoustic interactions which are often vie'»d as essentially
fluid in character. The code can therefore be used to examine the effects

of particle behavior in problems such as the electromagnetir collisionless

shock.

This model of the electromsgnetic-particle interaction has been
treated theoretically for a long time and is often called Darwin's nodel.l
Because the complicated retardstion effects of the electromagnetic fields
are absent, the model iz naturally attractive for plasma simulation. Pre-
vious computational approaches have been applied to the sheet -ode12 and
to simplified conrigum:ionl3 wvhere the canonical lomntulh is strictly
conserved. The present paper extends the Darwin model to a one-dimenasional,
finite-sized particle model where external magnetic fields destroy the con-
servation of the canonical momentsa. A priori it would seem more physical
snd therefore advantageous, to solve the particle equations of motion
directly. It can be show Ly arguments of numerical analysis, however,
that direct solution of the momentum equation by the usual methods leads
to violent numerical instabilities. These numerical instabilities have
their root in the physical fact that retardation exists in reality. The
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removal of retardation adds extra constraints to the motion because the
degrees of freedom in the electromagnetic field have been removed. When

5

the transverse displacement current is retained,” it can be shown by

numerical analysis that the same algorithm, generalized, is stable.

The algoritims presented here irtegrate the Darwin model by solving
an evolution equation for the no-longer-constant canonical momenta.
This method involves the solution of a relatively complicated, implicit,
coupled Helmholtz equation for the componentus of the vector potential.
In this wey the pathology of an unstable initial-value problem in time is
converted to a two-point bourndary-value problem with pathologies cf its
own. These problems are resolved, however, by relatively standard

techniques.

II. DEFINING EQUATIONS

Introducing the standard vector and scalar po'cer\'czl.all6 and invoking

the Coulomb Gage,
VA =0, (1)

Maxwell's equetions .ay be written (in Gnussian Units)

v = =bm , (2)
% -4 . by (3)
c” vt
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where Et is the transverse current whose divergence is zero. The actual

field quantities are then derived from the potentials as:

B = vxX+B, ()
S N (5)

where the externally applied magnetic field has been separated for

convenience.
In a one-dimensional tem { 0 = 2 = 0), neglecting the
sys =7 = o s neg g
321
- term in Eq. 3, the equations to be solved are then:

at
_620 = -Ll» e (6)
dx 2

and
dx? <

The equation of motion of the i'th particle is:

= v

av q ] -
i _ 44 (E+ -2 xB) (8)
a® T 7:':; e

Since the system is one dimensional, it is convenient tc treat the x-
direction and the tiansverse (y,z) directions differently. This equation

of motion may be written in terms of the potentials as:
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T .4 I I S e - .__M*,e (9)
at - m, ¥x me ud iext " me i B3
and
v q a
I = 1 = = i P -
at - 'EF Vg ¥ Bxext e 'ifi—é Ye1¥ B ext - m,c (Vs * VA, (10)

If we define the canonical momentum of the i'th particle in the

transverse direction,

= - 4y _
Bog  Simg¥y ¥ S d A
them
Sy _ _c_l_i_ ¥ o ii_ bK.L - _?_i (Ttxi.V)Kl (11)
at - mc at c Bt
and Eq. (10) may be rewritten as:
dP q
1 1 (¥ = = =
= == (¥ x B +7. xB ) (12)
C i Xext xi dxt

The external perpendiculsr field, 'ﬁl , could be included in the vector
ext

potential, If desired, but since the total convective derivative of -15L 1
vanighe.: when the external magnetic fields are zero it is more convenient
rot to ¢o so. Second, notice that the canonical momenta in y and z are

coupled by the externally applied field B because ‘\7&

xt i
by Eq. (11). ny mye¢

=P.Li._ E]A.Li
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III. NUMERICAL ALGORITHM

Figure 1 diagrams the time advancement of the various quantities.
A1) particle and field quantities are defined at integral time steps
except for the x-components of the particle velocities which are defined
at staggered, half-integral, time. If we assume that all quantities prior
to and including to are known, the advancement of the particles proceeds
as follows: Using the accelerating fields at to we may leapfrog Vx“é to V}’é
This enables us to advance the partizles to thei. n2w positions
at t1' The scalar potential at t1 may now be tound directly by accumulating
the charge density of the particles and then solving Poisuon'e equation.
However, finding the vector pntential at tl is somewhat more involved.

Since both the new velocities and new momenta are unkncwn, it reauires an

implicit solution for the particle momenta and the current at the new time tl.

Iet us write the time evolution of momentum Eq. (12) in a finite

difference form using the time definitions illustrated in Figure 1.

+

ey]
it
|

_ q, vt ("n + T, )
g 0

*11 "‘10 ¢ 2 o -B-xext +iné 4 B.Lext
q vt Py ok (13)
= -15 + i - A X §
.Lio c ani anic xext
V.Lio - = -

+ 2 X Bxext + inﬁ P B.Lext

Fquation (13) can be s:mmed over all particles in the system and solved

for 511 , and ZL » in terms of the known quantities ¥
L 1

:I.O’ in’ A0’ -B-ext’
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For illustration let us consider first the simple case where B o.

=
xext

Here the mamenta in the y and z directions uncouple and we are left with two

scalar equations rather than a vector one. In this case equation (13) reduces

to
- - 98t _ -
P = P + \'s X B (14)
Lil -Lio c xi& lext
q; =
Multiplying (14) vy 7 and recalling the definition of P, (Eq. 11) we obtain
i
2 2
q q q,“At
e S i + i v
Zqi V.Li +Z: m.c A-Li b Z: m P-Li Z m,.c in 2 B-Lext (25)
1 i 1 1 o i ﬂ‘
i i i i
The right side of (15) now contains only known terms.
lm'f‘L
Makirg use of VA = - = »
we obtain
dA 2 2
1, _ lmqi A, g hﬂqi P.Li I lmqi At vxi 5 B.L - (16)
Ox2 m, c2 1 m,c (¢] m,c2 % ¢
i 1 1 1 B
which is of the form,
PAl) . @(atx) = S(x) (16a)

where the definitions of K®(x) and S(x) may be seen from (16). The numerical

method used in solving (16a) is explained in detail in Section V.
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When Bxext £0 by again summing over the particles we obtain an equatian

analogous to Eq. (¥ ) of the form.

2 2
q,“4% 9.0t B
— i -— - i xext —
+ + 2: A XEXT
+ quJ_i m,c (vx X BJ-ext)]} ( 2m,c qiv.u'._
o) i i i 9]

This equation is of the form.

Fhod | p2(x) w(x)

E - T(x) x &A(x) = S(x)

where now

) = Y -g-(—(TlF—)‘:six -

species
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2 Q
ESIEED) ggﬁ%‘g

species

w 2 =
2mgc’ps A

Equation (17) which contains known quantities only. The quantities K2(x),

q B At by g2
m

where Qs = , and S(x) is the right side of

T(x), and S(x) are all computed from known cell quantities which are accumu-

lated during a pass through the particle table. Boundary conditions and the

numerical solution of this vector equations are discussed in the next sections,

Once the vector potential is deternined at the new time t,, the magnetic
fields may be determined from it by fast-Fourier transforms or simply from

the numerical derivative of the vector potential.

To complete the loop the individual particle momenta may now be updated
by solving Equation (12) implicitly for P,, since V, may be written in
1, 1

terms of P"il and A"'il

which is now known.

The full calculation may be seen schematically in Figure 2. Starting
with an initial ensemble of positions and momenta, the velocities are accumu-
lated to give a current matrix and equation (7) is solved to find the vector
potential, From the velocities and vector potentials, the cannonical momenta
are calculated and all the quantities are now known priar to entering the loop

vwhich advances the system in time.

By accumulating the ;-~rticle densities and velocities over a matrix of
cells, assigning each quantity to the nearest grid point, the density and
current in each species and the quantities needed for the dipole approximation

solution to the electric fields are obtained.
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The vector potential is found from the accumulated guantities in the
transverse direction by the method discussed in Section V and the megnetic
field B is found from the mmerical derivative of the vector potential. The
electric field is calculated from the dipole approximation of the charge
density using fast Fourier transforms. The transformed fields are multiplied
by a form factor to give Gaussian shaped particles and thereby reduce the

collision frequency and anomalous heating.7

Though we have used an implicit algorithm to find the vector potential
from the particle momenta, the actual particle momenta have not yet been
changed. Using the known fields Equation (15) can now be used to find the

new momenta,

The particle x-velocities are then updated using the calculated electric

and magnetic fields and the new positions are calculated to close the loop.

It is important to note that though the momentum updating, particle
moving, and cell quantity accumulations are shown as three separate steps
all three can be performed on each particle sequentially. That is, all the
particle quantities can be calculated in one loop, This means that if the
particles are stored on a slow external device, only one pass through the
particles is required, and efticient use can be made of whatever fast
storsge is available to store the field quantities. Furthermore, it is worth

noting that the code is fully time centered and reversible.
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IV. BOUNDARY CONDITIONS

When applying the algorithm presented to a physical problem, it is
necessary to specify a well-posed set of boundary conditions on both the
scalar and vector potentials, The effect of these boundary conditions on

the physics under investigation should be recognized and understood.

For many problems of physical interest, i.e., those having no net
charge buildup, no net momentum, and no net transverse current, it is often
reasonable to impose periodic boundary conditions. However, if the system
develops a net transverse current or charge, naive imposition of a particu-

lar boundary condition can lead to non-physical behavior,

For example, if a net transverse current develops, imposition of
periodicity at system ends amounts to providing a return current at the ends.
There is an ambiguity about specification of the return current. Even if it
is decided to provide a return current at the ends of the system, the magnetic

field is only specified to within a constant.

Consider the fields due to one sheet of current. The jump in magnetic
field across the charge is the only thing specified. If the current sheet
were between conducting walls at the ends of the system, the fields would
depend on the end distance from each wall. If the simulation of an infinite
system is desired, however, this same approach would be undesirable. As the
charge moves toward either wall, the field would be compressed; that is, the

system is not translation invariant as one would desire in an infinite system.
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We can, therefore, consider the behavior imposed on a sheet charge in an

invariant system as shown in Figure b,

>
<

Figure 3

As V27 = hﬁﬁ/c is second order, two constraints are needed to
specify the potential. The value of the indeterminate constant may be rea-
sonably chosen, such that the fields on opposite sides of the current sheet

are equal and opposite. Thus one condition is

() + B (x) = 0. (18)

22

If the current element is moved from side to side, it can be seen that
A(XR) + A(xL) = constant. If A({w) {s chosen to be zero in the absence of

transverse current, the second condi.ion becomes

th_
Hoa) TR 7 'L - (19)
W) W)
h o T Tx

140




. St oy

= T W IR el

Yl

Electromagnetic Particles Code

THEORETICAL CURVE v

. v
] X (-] e vl:ﬁ €
0 v o

YoN

o ELECTRON PINCH
» ELECTRON PINCH (i28)
v ION PINCH

L

GROWTH RATE vs. WAVE NUMBER, k= —ppge®
THEORETICAL GROWTH RATES:

Yo Wpe V 7 . Npiv
EL 172 1ON Ly 47 ]
C(“k - ) c(hgk'%c:!)
Figure 4

141



BEREECAR e S e A ek 4

Haber, Wagner, Boris, and Dawson

As a plasma is a superimposition of such current sheets, Equations
{18) and (19) provide a way of simulating an infinite system without it

being influenced by the return current,

In a uniform periodic system, it may not be desirable to specify any
"end" and & uniform return current may be appropriate. Cr, in the simulation
of a shock problem, it may be appropriate to specify constancy of the upstream
magnetic field. However, some insensitivity to the bcundary conditions occurs
when a plasma is present since ithe effect of a return current at the ends is

usually shielded within a few magnetic Debye lengths.

In any system where ends are imposed, one must also consider what
happens as particles move off the end. They can be reflected or reintroduced
with the same or a new se¢ of velocities at the other end. 1In such systems
care must be taken so that the energy change of the algorithm is properly

monitored if the code *. cu conserve energy.

There are certainly other well-posed sets of boundary conditions. The
brief discussion here is not intended to be exhaustive. It does indicate,
nowever, the nature of the problems which must be considered in some of the

more important classes of problems and that care is sometimes in order.
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v. SOIUTION OF THE VECTOR POTENTIAL EQUATION

When the x-component of the maguetic field is zero, the equations to
be solved for the y- and z- components decouple, each being of the form
(Equation 1h)

?%4.,‘(,51 - K2 (x) A(x) = 5(x). (20)

vhere the source term S{x) in the present application has been shown to

be a sum over particle momenta and tke non-negative coefficient K2?(x) is
essentially the plasma density. Problems arise in intcgrating this equation
because the two homogeneous solutions of Equation (20) are of an expcnential
character, one right growing (n(x)) and the other left growing {L(x)). These
two homogeneous solutions, furthe-more, do not satisfy the periodic boundary
conditions required of the complete solution A(x) in an important class of
problems,

The exponential problem 8,9 becomes serious precisely in the many
magnetic Debye length case when g>x  >> 1 for then both R(x) and L{x) will
exponentiate many times in traversing the system fromx = 0 to x =X B
(where <> is an average value of K across the system). Since any truncation
or round-off error in integrating Cquation {20) numerically toward either the
left or the right can be represented as a linear combination of R and L,
this numerical error will grow by many orders of magnitude couwpared to the
actual sclution sought when me» 1. Thus extremely long word lemgsth and
very accurate algorithms would be necessary to permit even a moderate accuracy

in the desired solution after integrating Equation (20) fromx = O to2X = I
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The exponential problem here is further compounded by the fact that
S(x) are given as mesh functions, that is {Sl} for 1=1,2, ..., N4l,
where § = 8 ) and similarly for K2 (x). what is clearly required is a
simple, quick, low-order algorithm which can be used a 1000 to 10,000 times
without consuming undue ccmputer time. Furthemmore, this algorithm must
give a uniformly accurate solution across the entire grid. The "partial
Wronskian" metmd8 described here gives a way of solving ordinary differ-
ential equations which exhibit an exponential problem irrespective orf
integration technique. In the present applicatior, a second-order difference
equation for {Ai}is solved given {K:} and {Si} for 1=1,2, .c., N4 1 such
n +180d A=Ay ).
We write (with bx = 1)

tha.tAl=A

2 - A
Al_l -(2+ X, ) Aj+A . "5 (i=1, 2, ..., N) (20a)

i
as the set of N difference equations to be solved for the N unknowns {Ai} g
This is just the usual tridiagonal matrix equation where two additionel
elements in the matrix corners are non-zero due to periodicity. If {Kiz}
were constant or of certain prescribed forms, a cyclic reduction technique
could be used to colve (20a) both efficiently and accurately. In the present
case & direct solution by the direct two-sweep elimination methodlo is
possible when fixed boundary conditicns on {Ai} are given (say l\l = Anﬁ =0
to e¢liminate the corner elements). The periodic solution can be recovered by
adding to this particular inhomogeneous sclution {Api} a linear combination
of the exponential (non-periodic) solutions which insure periodicity of the

derivative (i.e., Ay = Anﬂ) as well as of the functinn itsel.)'. These
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inhomogeneous solutions {Ri} and {I’i} can he found by integrating the Equation
(20a) to the right and to the left respectively to minimize the accumulation
of round-off error from the exponential problem.

The proposed partial Wronskian method has two advantages, however,
over the direct two-sweep method. The partial Wronskian method does not
propagate information concerning the particular soluiion across the entire
system and this reduces error accumulation. The operation count is also
better than for the direct solution of the tridiagonal matrix equation and no
divides are required. Thus both speed and accuracy are superior, Furthermore,
the method generalizes quite readily to the fourth-order set of coupled
second-order equétions for the transverse components of the vector potential
which replaces Equation (20) when the x-component of the magnetir field is
non-zero, This problem will be discussed shortly.

First consider the homogeneous solutions of Equation (20), R(x) and
L(x). We can write a Wronskian for these two solutions from the differential

equation

wRL(x) = R(x)L(x) - R(x)L(x) = 1. (21)
This Wronskian plays the role of the quantum mechanical orthonormality
condition in the fcllowing analysis for, given an arbitrary sct of two
numbers as (A(x), Alx)) at some x, we can use Equation (21) and the known
solutions R(x) and L(x) to find the composition of (4,4) in terms of R and L.
Thus

A=aR+bL (22)

. n - £ 0.
where a & W, and bEW,. From (21) onc can see that LT 0

T
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Equation (21) is furthermore a global relation in the sense that the
Wronskian between these two solutions has the value 1 for all x, independent
of the function K23(x).

The global condition (21) can be used to eliminate the divides required
by the two-sweep method while eliminating error propagation. Consider the
following algorithm for solving Equation (20). The result will be equivalent
to solving the standard difference formulation Equation (20a). The homoge-

neous solutions can be determined by integrating (20a) starting with Ry

x, SRR

and Ri chosen to approximate the right-growing analytic solution. Then, using

a ctandard leapfrog integration moving to the right,

’ - 2 2

, Risp "R tK Ry

] - (23)
= - %

Bie1"R 7 %4y

R, 1is an exact solution of the homogeneous difference equation (20a without §)

i
for which the round-off error accumulation is negligible. {Li} can be found

to the same accuracy by using the same leapfrog algorithm but integrating

from right to left. We define

W, (R,L) = Rix.i'_Q - Ri'_iLi (ak)

Then, using (24) to advance both {Ri} and {Li} it is easy to show that W, =W,.

Thus the Wronskian is a conserved quantity of the difference as well as the

R R RN TR I A AN RS YT A = - e s, A8 Tt R bt
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differential equations. Defining Ai P - A, as for the solutions R

A,
and L,, the difference equation (20a) becomes

i

¢ ’ - 2
Ay g~ Ay =S +K A (25)
Now define A as a linear combination of the left and right-growing =<iutions

between the grid points. Thus

My%eg PPl

A

n

- T MrPaly

hold for 1 <« x < i1 + 1 and i-1 < x < 1 respectively. Since we must have

A, = A, at the grid point i,

14 = M1
(8500 = 25 3) By = = (B =Dy 5) L, (26)
Using the above expansions in Equation (26) gives
(aexu_i - ai_*) Ri'-g = - (bi& - bi_t) ]L'_t + 8. (21)
The terms in Kf cancel when (RL%, L;&) is written in terms of (Ri'_%, Li'_*)
Solving (27) and (28) gives

(o4 - 8,3)= - 5% My
(28)
(byyg = P1oy) = SyR N,
Note that Wi 7 1 under a suitable normalization of L by Because the
expansion of A in terms of R} and L for one cell can be found from those in a

i
accumulated in two extremely simple sweeps, one from the right to the left

neighboring cell by applying Equation (29), a particular solution {A } can be
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sccumlating the contribution of R and one from the left to the right for

the contribution of L. These two sweeps are accomplished as follows:

Set Bi = ¢, A1 = o, then accumulate using

Pip = b1y * SRy

(29a)
Aie1 = Pig Ly
Set ."“i = o, Am:l given from previous sweep. Then accumulate using
ai_* = a“_i + SiLi’
(29v)

Ai‘l = Ai +* ai_t Ri_l-

The periodic boundary conditions are satisfied by adding the appropriate
linear combination of {Ri} and {Li} to the particular solution {Ai} determined
as above, Similarly some other set of well-posed boundary conditions could be
so satisfied.

The extreme simplicity of (29a) and (29b), using as they do the additional
knowledge that the Wronskian is constant, provide the great speed of the method.
The symmetry of the method, treating right and left directions equivalently and
only accumulating the particular solution by sweeping in the direction of
decrease of the homogeneous solutions provides the accuracy. The contributions
to the round-off error of the overall solution decay exponentially away in
both directions using this method. Thus, accumulation ol error can occur over
only a single magnetic Debye length rather than across the entire system.

This method has an additional advantage, It generalizes quite readily

to the coupled set of second-order equations for (Ay(x), Az(x)) which arise
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vhen the externally applied Bx field is non-zero. This coupled equation is

of the form

A% (x) _ ge (x) X (x) + T(x)x K =8(x) . (30)

Here T (x) can be an arbitrary function of x but actually has the same
functional form as K in the problem being solved here. We seek a solution,

in the present circumstances, to the finite difference analogue of (30),

o I S R
Ry g = B8y Hihgs | Sl E B Bl S8 (50a)

The usual double-sweep method now requires solution as 2 x 2 matrix operations
for each grid point.

The solution of (30a) is begun by finding the four independent solu-
tions of the homogeneous difference-equation system. There are now two right-

growing and left-growing solutions which we shall label as 3?;1 z 3'132 ,‘ Sf.l ;,
! !
i i

and 3f¢ ‘ « These, of course, are found by a leapfrog generalization of
i
Equation (23) where the integration is performed in the direction of growth
for each of the solutions. Actually only two integrations are necessary, one
from each side, because 'ﬁz can be found from l_il as follows:
R =R ,R =-R,. 1
R,=R , R 1 (31)

Yy 2 2 y

and similarly for I‘z‘
The partial Wronskian is derived from the quantity Wi formed in analogy
with Ecuation (24). Suppose .ﬂl and ﬁz are two solutions of the homogeneous

difference equation (30u) (i.e., any linear combinations of ﬁl, ﬁz’ f.land 'f.z).
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Then, by dotting (30a) with (H e - Haz) and with (H1y - le), the following

T S TR ST R TTRRA T 4

partial Wronskian relation can be derived:

WH,H)=MH, H' -H' H )
17 e o Z1-p lyi-p 3yt

: (32)
- (Hl H - H' H ) = constant.

21 Zzi-p  ‘zi-g Zzi

This somewhat more complicated "partial Wronskian" takes the piace of the

uncoupled-equation result, Equation (24). It is clear then

Wi('}_ia, Tg) =0 (32a)
vhere ﬁa is any homogeneous solution. From Equations (31) it is also clear
then

W (R, R)=w (L,T)=o0. (32b)

Furthermore, we can choose L  initially so that LA (-ﬁa, T ) 0. This is

1 1
S0 because we have the freedom to "rotate" the left-growing solutions, determined
by a single integration and application of Equation (31), and the second half

of (32b) will still hold true. A simple normalization of -I:l then insures that

0. (32¢c)

w;@R,I)=1,W; R, T
i( )? 1) ’ 1(-2’ Ll)

1]

It is then easy to show, that wi('ﬁl, 32) 0 and Wy ('ﬁz, 32) = - 1. These
relations then again operate as orthormality conditions. Equations analogous
to (26) and (27) can be written and accumulations sweeping to the right and
to the left can be taken to minimize error. Then, still in analogy with the

solution of Equation (20), the correct linear combination of the four homogeneous

solutions can be added to the particular solution to correctly satisfy the four

boundary conditions.
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An even greater speed improvement is found for the coupled case because
the divides of the usual tridiagonal matrix reduction become 2 x 2 matrix
inversions in the coupled case. These inversions are effectively absent in
the partial Wronskian method because Wi is constant and can be judiciously

made either O or 1.

VI. CONCLUSION

The preceding sections have discussed the details of a simulation code
which follows the particle orbits in their self-constant electric and magnetic
fields, At this time, some experience has been compiled already running the
code., Using a non-optimized Fortran version with 40 thousa:d particles in a

1024 system, approximately 3 seconds is required per time step on a 360/91.

The code has been tested by running a number of transverse pinch experi-
ments. Figure 3 is a plot of the growth rates experimentally observed. The
two electron pinches were run with counterstreaming cold electron beams and
& heavy neutralizing background. The experimental points are shown for
experiments on a 128 cell system and a 256 cell system. Also shown is a set
of points for an ion pinch experiment (mass ratio 16) with cold counterstreaming

ions in a cold electron background.

Since the code presently uses a nearest grid point approximation for the
magnetic field, it has generally been found that wavelengths of only a few
cells are not handled accurately. This can account for the experimental
scatter on the high wavenumber end. Since the higher wavenumber modes grow
more rapidly than the lower ones, saturation occurs in just a few growth time
for the lowest modes shown, The experimental scatter on the low end is

because of the lack of enough time before saturation to get an accurate slope.
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Physically meaningful results have also been obtained in more complex
situations, such as counterstreaming inhomogeneous beams but here the theory
3 is not complete enough for easy comparison to experiment. However, the code

has yiz2lded valuable physical insight into complex physical situations.
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Formulation of Self-Consistent 2- and 2-1/2-Dimensional
Electromagnetic and Relativistic Simulations*

K. H. Sinz
Lawrence Radiation Laboratory
University of California
Livermore, California

ABSTRACT

A formulation for self-consistent 2- and 2 1/2-dimensional electro-
magnetic and relativistic particle simulations is presented. The particles are
infinitely long charged rods that move under the influence of their self-
consistent fields. The numerical algorithms that numerically solve the
appropriate Maxwell's equations and the Lorentz force law in a first
order central difference scheme are given. The principal results are

also applicable to simulations in one or thiee dimensions.

*WOrk performed under the auspices of the U. S. Atomic Energy Commission.
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I. INTRODUCT ION

Gver the past few years considerable efforts have been made in the
study of relativistic electron beams in plasmas. The approach has usually
been the use of fluid type equations in which for example the background
is approximated as an Ohmic medium.] 7o make 2 study of the nonlinear
aspects of the hose mode and the tearing mode in relativistic beams which
avoids such approximations, we have developed a self-consistent relati-
vistic and electromagnetic particle simulation. Since the effects of
interest seem to depend primarily on only two linearly independent wave
vectors — one parallel and one perpendicular to the direction of beam
propagation — we restrict ourselves to two dimensions. A description
of such a model is given in Sec. II. The numerical scheme employed is
a first ordsr central difference scheme. The numerical algorithms are
developed in Sec. III. It is interesting to note that with the exception
of the constants the result for the Lorentz force is also applicable to

a three-dimensional model.

II. PHYSICAL BESCRIPTION

In a two-dimensional model the particles are taken to be thin uni-
formly charged rods of infinite length that always remain parallel to
one another. A plasma consisting of such rods is inhomogeneous in x and
y, which are taken to be the directions perpendicular to the rods and
homogeneous in z ~ the direction along the rods. If the rods move
only in the x and y directions the model is considered to be simply 2-D.
Motion of the rods along the in;inite dimension constitutes infinite-
line currents with the associated x and y magnetic fields and the z electric

field. If tnis latter motion is incorporated in the model it is for
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convenience referred to as 2 1/2-D. In both the 2-D and 2 1/2-D models
gradients with respect to z are absent. The boundaries are taken to be
perfectly conducting walls that are infinite in z and that form a rec-

tangle in x and y.

Initial conditions can be determined in several ways. In our case
we will be interested ariong other things in phenomena associated with the
beam head. We therefore need a beam injection mechanism. This is simu-
lated by "peeling" charge rods off the wall 2nd letting them proceed at
the desired initial velocity into the cavity formed by the conducting
walis. This can be thought of as a charged particle entering an experi-
mental tank of soie sort through a conducting foil. The background plasma
can be thought of as a nre-existing but very cold plasma. It is particu-
larly convenient to let the initial background be a perfectly cold and
perfectly neutralized "gas" with no fields which is then "ionized" by
the beam. The initial conditions and the boundary conditions obtained
in this way are all self-consistent and allow us to treat transient
phenomena associated with the beam head.

The equations that are solved numerically to advance the particles
in time are Maxwell's equations together with the Lorentz force law.

This approach was adopted because the required differentiation when
using the vector and scalar potentials proved unfeasible for numericail
reasons. In order to put these equations in finite difference form
the notion of finite size particles is used. This means that the
charged rods above are not infinitely thin line charges but have a

finite cross section. The interpolation schemes of Birdsall and Fuss2
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are used to assign currents to points in the grid which is constructed

in x and y, and to determine the forces on the particles. The differencing
scheme is a first order central difference scheme in space and in time.

A 1 1/2-D code written to test the methods gave satisfactory results.

The same conclusion is born out by preliminary results from a 2 1/2-D

code.
Y] '
+J'2;E;L Jx Ex,, By | T2, E2
(
|
|
|
(
Hy  WyEqs Bz~~~ AR

Hx

Fig. 1. One grid cell showing the relative positions of the points

for which the various quantities are calculated.
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I11. NUMERICAL :OCEDURE

In order to simulate a plasma including electromagnetic and rela-
tivistic effects we need to solve

m)

VxB=2 2

nl&
Ce

s L
c

e
(o

?

<
»
m>
-
O |=
Xl

4w = & (E+ L2E),
v-§ = 0 is satisfied if we start with zero field and V-g = 47p is accounted
for by the first equation and the continuity guaranteed by the Lorentz
force. The latter two equations can be used to determine initial conditions
and to check consistency of the computation.

We shall restrict ourselves to cases where 22 0. It is convenient

0z
to make these equations dimensionless according to

V'U%
t=t'd
e=4q'Q
x=x' 2
y=y' 2
Esg"_'ﬂ
B-B‘m
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where
Q = charge/length ;
X = some typical length
¢ = speed of light. ]

In component form the dimensionless equations that need to be solved §

are: ;
B 3E
b <X
(O s~ %
B 3E
-t = Y
(2) x Jy N kA

B
@) =X:=Hz§ +=2

oE 9B
2 X _
(4)-ay—+‘ét——0
2 9B
ST PR A
8) -5-+5 =0
of of 9B
Vw12
€ 5 -5 *= =0
along with
Py 2 A A
4 2. uxB
(1) Q= q [s+ ]
ool
where -

u
J= Zk qut'é(x‘ xk) 5(.V'yk)

and
v V1 ()2 s ()2 (1)
2
{NOTE : (51%—) is dimensionless)
me
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Inspection of Egs.(1)@) and (6) shows that they form a complete set of
equations for a 2-D system with Jx and Jy as the driving terms. Equations
(3), (4) and (5) are the additional equations to make the system 24-D. We
will put the above equations in finite difference form using the central

difference scheme:

dA .- Az+] - Ay

aaw Hw

L+

where Hw is the step size. We use a rectangular grid.
Numbering x,y,t steps i,j,n respectively (and denoting particles by k)
we find it convenient to use the following quantities for a 2-D computation:

e gn gits
i+l Vi, j+4 i+, j+l

For a 2%-D computation we also need

" g+ A

2.3 X4, 54 Yith,j

We shall be concerned mostly with rectangular systems with perfectly

conducting boundaries. If the boundaries are chosen to be at i = 0, i =L,
J =0, ] = w, where L and w are integers, then we see that the above choice
of field quantities is fjust right to make the fields that are known from the
boundary conditions fall exactly on the boundaries rather than an haif grid
space from them. That is to say ; b3 E = 0 and ; . é = 0 imply

E: =0 E, =0 for 2-D
i'”i ’j=0w N i=0L oj'“i
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and
gn =0 N =0
z,_ T 1 g
1=0, 5 1,520,
for 2%-D
™ . BT .
*i=0, ,j Vs

where the choice of integral and half steps agrees to satisfy these boundary

conditions exactly.

The algorithms that give the fields are for 2-D

g" = -He-" 4 ] ”t) - "
iy, j Xiayg, 5 X4k, l TV TS FYR Y

N = He-d™% E" -1 (Ht) g% - gk
R Yign Yiges U2 g7 2 g

SR L
’wm 1+’! J+% Yiel, joy Vi g4y

)( 14,541 "wm)

and additionally for 23D

52 thgl’ +52‘ +
i,d i, i.J

) g% _ gn-k
W\ Vs, Yioy,g

. (Ht) g% _ gh-k
AV X ge %5
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n#y n-% Ht] n n
B = B - € -E
I L (“7 ( Z,401 zi,j)

BT Lt (ﬂt-) -
Yisg,j  Yingg P Zeg o %

where we have made allowance for using a rectangular rather than a square
grid.

We now turn to the Lorentz force. In difference form it is

N - amg? e, u' x B" .
Ht mct y"

o
If we use —— in the expression for y we then in practice have a

set of three coupled fuurth-order algebraic equations for the components

“n +!i

of u Let us find a different way to solve these equations. To this

end we realize that for large u,y varies nearly linearly with u. If we

assume that changes in u in one time step are small, we can then expand
u" “nty  “n-k

= in powers of (2% -u %), The result is

Y

PP P ;,n-s,[_ (@ - an-*)-an-*s]
n- n-
L ¢ 2(y")3

<

Y

Substitution of this expression in the Lorentz force gives a linear vector

Ny - l}‘n-’s)z

equation in G“**. We have dropped a (G term which contributes

te o™ only in the second order. Using the following notation:
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3 PN
2 u =I.ln+l!
§=§"th4 ~ ~n-k
E mc U =u
"‘ s o ang’ n-%
s E=E th-—'gh Y =Y
mc

the Lorentz force becomes
IR JRN (SR P
u -u)- ~ 5 [(u - u =3 Y

This can be solved to yield

where N A ~ PN
AA - 2y i A~ ~ 2
o u5+1_1§_1-g7.(3xg,1L-7§19_§1)
u‘(l.l+ = I.l) = 4;2 x 6 2
142+ 1—-11-
4y 4y

This is an explicit solution for G+. It is also the aeneral solution in
three dimensions.

The new positicis are given by

A -~ A*li
3 ntl _ “n u"
3 X X + Ht ;ﬁ;;.

It is clear that in a 2-D system no forces can ever arise to make the

1 system 2-D. Also we see that e-m waves polarized in the x-y plane can
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exist in the 2-D system. In the 24D system all polarizations are possible.

In all cases the wave fronts have t¢ be cylindrical.

Because of the frequent occurrence of vy and the square-rooting involved
it is desirable to find a way to calculate this quantity in some other way
to save time. This is particularly true in our system of units because
during the nth time step the value of v at n-% is needed in the Lorentz
force and the value of v at n#¥s is needed to calculate the new 3 and the

A

new X.

However, we could use

A A n-k
TN L T u:-

Ty u P Tele el sexe
Y

This approximation is not completely consistent with our other approxi -
mations, but for large u, y varies very nearly linearly with u, so that

this is not a serious matter. For example using u:'% = .1, u;'% = .1,

W% = 1 and W7 = s, WP e 15, W] = 15 gives ¥ = 1,030
compared to the exact y"+% ~ 1.033. In practice we do not expect velocity
Jumps of 50%. Even at that, however, for larger u the agreement of approxi-
mate and exact v values becomes outstanding for the same relative size

Jump.

In connection with the evaluation of the new 3'5 we remark parenthetically
that the assignment of 3 values to the grid space requires an interpolation
in ; at half time steps. However, ; is calculated only at integral time
steps. The apparent need for two ; arrays can be avoided by calculating

each particle's contribution to the J array as its velocity and position
are updated. Also, the interpolations that are associated with the
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aforementioned finite size of the particles are the same as those of
Birdsall and Fussz.

The methods above have already been used in a 1 1/2-D code. The
results were satisfactory and no reason was found to modify the approach.
Preliminary runs of a 2 1/2-D code also indicate that the present methods

are adequate.
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1. Introcuction

The details of corruting ere cne of the burdens thet rust be
P . . .

borne by the physicist whe believes in a rarticular cese that only
Uy a comrlex calculeticn will he be gble to substantiete his theory
or esteblish the intricacies of & real exrerimental situstion.,
revertheless, it seers tc us that the sinuletien of rlesre hehaviour,
te take or exemrle, is at nresent nede a rore c¢ifficult tesk then it
need be rertly heceuse of the limiteticns of evisting rroeremmine
lanruares, and rertly becsuse erch worker in the fiel¢ ususlly corstructs
his own irrut, outrut sné centrel freilities, and often dees net develop
his rroperer in e systenstic wev, I'ewever, ¢ corren structure csn
be sdented ter & wice clars of time-~cdererdert fluld flow rreblers,

o heln the conputationesl plaswre physicist to keer cleser te

(1,2,3)

tis rrobler, the syrbolic use c¢f Alpol hes beer develoned .
Turther o syster has been cdevisec which envbles cermruter rroprers
to Ve ouilt guickly out of a set of standerd rrefrbricrteé modules,
vith the sddition of » few further rmedules reculisr te the rreblen,
‘the strle ennbles =ll detrils of retrenstics snd lopic to be hidden
at a lover level, 'Tve discussion will he hnsed on the use cf

Sniolie ilrel, see seetien II, but the repnrks about the need fer
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a good adaptable rropram structure hold true also in Fortran (see
hppendix).

The prefshricated genersl purpcse modules desl with output,
vector alpebra, vector analysis, prorram centrol etc., act as 8
library, and provide the physicist with & rrcrrem which has a logical
structure end with the mathematicsl tools with which he is femilisr.

ileny progrems in plasma simulation share the ssme surerficiel
structure - g 3et cf differentisl ecuations are solved as a function
of time - and this superficisl structure can be race tie seme in a
suite of computer preprems, and only the sections describving the

actuel physics need be different from case to case., fvnibolic Alprol

programs cen moreover be written in a mechine~incerencent wey, sc thet
they will run quickly on any computer system, nnd with careful design
they can be made to execute with high efficiency.

To censtruct werthwhile progrems rapidly, medules with well-defined
interfaces and dewendsble cheracteristics must be eveilshble - thia
can be achieved using tiny testbed rroprams the resultz cf which are
aveilable es pusrantees of cenfidence. The "stendard emrty rroeren"
DUIMI'YRUI! described in section III was tested in just this wey bLefere
beinp used as the skeleton on vhich to heng wmore substentiel vroprars.
Such proerams as FOLLS (8 2D nrerrar fo: stucyine enclosec convection)
and TRINITY (& 3T MED rropran) heve been tested this way enc orovide
good illustrations cf the way in which initiel conditiens snc boundery
conditions (see secticn VI) can be set ur easily in Cymbelice £leol I.
These vere initially rrocrans using lespfrof scheres but the mecular
structure is flexible enough for other schemes beth explicit anc
implicit to he incorporated without mejor surrery. Uuch flexibility

is illustratec in Section VII,

166




Symbolic Programming
2, Symbolic Algol 1

Let us first recall how symbolic Alpol technigques cun be used
t0 express proprams that solve sets of partial differential

(1)
equations, These techniques were briefly reported at Culham

ané a more comnlete account cen be seen in rapers te be wublished
{2,3)
soon .

For mathematical text books, a feirly standard notstion hes
been adopted for such topics as vector alpebre, snd analysis. This
notation is highly compressed and can be co-ordinste-free, For
exarple, the vector magmetic field is yritten tersely as B insteed
of in the expanded form (B,(x,y,z), By(x,y.z). B, (x,v,2)) and such
expressions as (curl _E_)Ag are independent of bc.'th the particular
co-ordinaxelsystem used and the effective number of dimensions.

Consider‘the equrtion of charge conservation

-g.%+divi-0. . (1)

Using an explicit difference scheme we may express this in Alpol 60
acfo] := 0 - DT ® DIV(J); (2)
vhere:
AC is on errsy heldine the charre;
0 is the locsl oripin of the diffcrence schere
€ is the value of the charre at the 'old' tire;
DT is the effectivc time increment,
J is the current vector;
DIV is & finite difference operator.
Here Q, J, and possidbly DT are real parameterless procedures. i.e.

they depend only on implicit 5 which represent the chosen
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vector component end lsttice point in terms of the recmetry of the

problem and do not depend on zny explicitly exhibited variable,

The differential oucrator “div™ ie defined in mathemetical phyeics

for a cartesian co-ordinate system by

3 aF,
dvE = $T (3)
= iml X

In Symbolic Alpol I it is represented by the ocuite analogous real
procedure DIV vhich has & declaration of the forr
real procedure DIV (A); real A; DIV: = SIGMA(DEL(A)); (k)
The procedure DIV here has an explicit arpument, as div does in vector
anslysis.
A second example of the compactness of Symbolic Algol notetion
is in the difference form for the Vlasov equation. For a continuous

distribution function f ve may write the Vlasov equation in ordinary

mathematical notation as

v (e ¢ (s 2=0 (5)

vithout needing to say explicitly thst f is e function of (x,v,z,u,v,w,t)
vherever it is mentioned.

In Algol 60 this can be written

AF[0] : = F = DT * (DOT(V,DEL(F)) + DOT (4,DELV(F))); (€}
Because procedures can be paramsterless in Alpol (unlike Fortran)
ve can express the distribution function as F, ite current value,
through the definitions

real procedure F : ¥ = AF(0); (1)

vhere O is a matrix subscript and represents the current position
on the lattice,

The real procedure DOT is the finite difference analopue of the
inner vector product i.e.
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&b - DOT(A,B) (8)

To shov the way in vhich Symbolic Algol I is able to build up
nev procedures from older ones in a hierarchic fashion, the nested

structure of DEL can be exhibited. The abbreviation RP will be

used for real procedure and IP for integer procedure

P DEL(F); resl F; DEL = (EP(F)-EM(F))/(2%*DS);

RP EM(F); real F; begin O : = 0 - DO; EM:=F;0:=0 + DO end

RP EP(F); real F; begin O : = 0 + DO; EP:eF; O:= 0-DO; end E
I¢ Do;

DO:= if C eg 1 then 1 else if C eq 2 then PI else PI*PJ

O is the current lattice point. C is the index apecifying the

direction.
B

c-?T
,C-l P A

It C = 1, DO corresponds to the length PA, and the statement
C:= O + DO moves the current oripin from P to A, If C= 2 the
origin is moved to B, but if C = 3 it is moved in the s-direction.

This may be compared vith the mathewaticel hierschy

Vs = (- (10)
2h
vhere
E'(z) = v(pser)
- (11)
E"¥(z) = ¥(r-dr)
and
dr = 4x (x component)
or dy (y component) (12)

or ds (s component)

169




Roberts and Peckover

With so meny nested procedure calls Symbolic Alpol I usually
executes slovly, but it is very clear vhat the program is doing, Such
an spprosch enables clear programming in the initial stapes. Subsequently
could be made faster oy introducing a vecto: DR with 3 elements
containing 1, PI, and PI * PJ respectively. The procedure definition

for DEL could then be compacted to

RP DEL (F); real F; begin real F1

integer DO;

DOt = DR(C); O: = C + D03 Fl: = F; (13)

O: =0+ 2% DO; DEL: = (F1 ~ F)/(2 * DS);

0: = 0 4+ DO; end .)
A deeper level of optimisstion is to rerlace the r.h.s. of eauation
(6)by an explicit linear form in AF E" + c_'l for a sum of terms in
0. For exsmnle vhen C = ],

DEL(F) = (AF[0 + 1] - #F [0 - 1])/(2 * %) (1%)

Ortimisations of this kind can be carriec out automaticslly end
are discussed in detsil elsevhe(x;le‘ )2.

Converter prorrams exist vhich enable enuaticns to be
converted sutomatically into an optimized ccde for any desired
combinstion of output lanpuspe, co-ordinste syster, and difference
scheme, Lanpuspes implemented so far have beem Alpcl, Fortren,

KDF9 Usercode and IEM 360 assembly lansuape. The optimized

module is then used, in conjunction vith the remainder of the

original Symbolic Algol 1 progrsm, to carry out the nroduction runs.

3. _Standaré iedulsr Ctructure

Consider tvo proprans thst solve twe sets of ¢ifferent time=
depencent fluid equations. Lvidently these prosrars could be designed

to hsve s lot in common; everything, in fsct, excent the physics. We
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have developed a series of Alpol mcdules which deel with stancard tesks
such as output, vector alpebra and snslysis, prosrar contrcl and so om,
and vhich fit together to enable s wicde renpe of rhysics prorrams to be
constructed guickly. Some of these prefabricsted rocules have been put
topether to form s skeletal propram DUWMYRUN which has the renerel
structure of a proprar that sirmlates time-dependent rerticle and fluid
flovs, slthoush it sctually coes no vhysics. It is 2 "standard empty
program” which with little effort cen be converted inte e runnine
prograx for s real vhysicsl problem,

DWMYRUE consists of s set of modules which are svailsble ss on-line

files end hss the folloving structure:

DWZIYELAD
OUTALGOL
ALGYRKA

CAPTESIAN
UTILITILS )
Fir.1
DUM'Y FREDATA
MAIN COLTPOL
DY PIYSICS

DuIElY COnTrel

TAIL

let us build the rropram up piece by piece:

(a) An #lpol propram needs jcb comtrcl cards, and » berin Z FLAL
for the outer block.

(b) It needs ar end for both the outzr block end the inner

T/IL
rroblem-oriented block.
{c) In order to output anything, sn output channel must be
OUTILGOL
specified and output procedures provicec.
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(d) The type of physics problems in wvhich ve are interested ALGEBFRA
uses vector algebra, difference schemes in Cartesian CARTESIAN
peometry, vith vsriocus sorts of array output. UTILITIES

(e) Clearly other standard librsry mocdules could be inserted,
to generate on-line praphicsl displsy or to use
cylindrical co-ordinates, for example.

(f) Prior to entering the inner (physics) block, dynamic

array bounds must be set and the various modules PREDATA
activated.

(r) Most fluid simulation vroprams seem to reouire much the

l; seme elements, as ve find bt~ perusing prorrams written

in the past both by ourselves and by others. These

hsve been formalized into & stendard control structure .

MAIN CONTFCL
MAIl CONTROL comsitts of a series of ,.arameterless

1 procedures vhose names describe their functions (Fip.
‘ 2). This provides a compsct vay of stating cleariy

vhat each section of the program does .
Each of the procedures called by MAIN COLTROL must be

defined and a series of modules sre created to do

this. Inatially ve need only twe: CONTROL and

PHYSICS.

(n) CONTROL nrovides the rrocedures which contrel the prorress
of the csiculstion, i.e. which label the run, clear the
core store, initialize the run, cutput when reouired, and CONTFOL

tie up the loose ends sfter the run is complete.

o
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- COMMERT" ---

S-FILE*MAIN CONTROL.CPIF4 (STALLARD MAIk PPOGRAH)J

* PROCEDURE"MAIN CONTROL; 'BEGIN'

LABEL THE RUN; REPORT(1,1);
CLEAR VARIABLES ANID ARRAYS; FEPORT(1,2);
SET DEFAULT VALUES; REPORT(1,3);
DEFIKE DAT/ SPECIFIC TO RUN; FLPORT(1,k);
SET AUXILIARY VALUES; REPORT(1,5);
LEFINE INITIAL CONDITIONS; FEYOPT(1,6);
INITIAL OUTPUT; REPORT(1,7);
. . . . Fip.2
FOR' N=HSTART'STEP'1'UNTIL'NSTOP'DO? —
*BEGIN'MAIN COMPUTATION CYCLE'.' T=T+DELTAT;
ADVAIICE ONE TIMESTEP; OUTPUT IF RECUIRLD;
'EWD' OF MAIN CYCLE; REPORT(1,8);
N=NSTOP; FIKAL OUTPUT;TERMIKATE THE RUN; REPORT(1,9);
L3 4 ]
| 'END
(i) PHYSICS provides a slot vhere the real physics is to be N

inserted. Initially it contains only a éummy procecure: (Fir.32)

E FILE*DUMIY FHYSICS®
' PHYSICS
Fig.3  '"PROCEDURL'ADVANCE ONE TIMESTEP; 'BEGIN'LINE

i TEXT(? '®#UERSHAVER® ADVAECED"#ORES#TIMESTEPR® ¢)

! LINE;"END'; :

PHYSICS can be aupmented, if recuired, ty rrocedures which
solve Poisson's eouatinn or which deel with standard
boundary conditions, for examnle.

(j) Through the module OUTALGOL, menticned esrlier in DUMMYRUN,
is funnelled all input and output. This rakes the prorrer

TLUISYFUN
yportable, since the chanres required to run on a different

— W \______—————-—\/——-‘__

machine are all concentrsted into one pleoce.

L, Acceptance Tests

Each module is part of an assembly, and as with any enrineerins

component that is to be used without constant attention, it is

sensible to put the module throusl. a proper set of acceptance tests
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to gusrantee that each element of the module pe~forms properly. Every
odule must be completely dependsble. Further, by making the tests
geverally available, the authors of the program raise ccafidence
levels, and allov the user to see for himself any restrictions
vhich may apply.
Let us iutroduce the concept of & "testbed”. This is & special
suall propram vritten for the nev module vhich uses and tests out 2ll
its features in as thoroush but economicel a way as possidle. A
testbed program consists of:
(a) The rre-tested modules required in order to use the
nev module, or to perform the tests.

(b) The nev module itself.

{¢) A specially written TRIAL module, which is the part of the prosrer
that runs through all the procedures in the module which
is being tested.

For example, the TESTHBED of the module ®ALGLBRA® which is used in
DUMMYRUK consists of b modules:~ HEAD (vhich contains the job
control cards); OUTALGOL (throush which is funnelled all output);

ALGEBFRA itself, and its associated TRIAL module (see firure k).

! HEAD '
' OUTALGOL -
* ALGEBPA v Ered
' TRIAL :

HEAD and (WTALGOL are modules vhich have been rut throursh just such
tests previously. The results of thia test sre made available as part
of the documentation for the module, and this facilitates conversion

to other computer systems.

For further illustration let us consider the module CARTESIAN.

It consists of prrocedures vhich are the finite difference analopues
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of DIV, GRAD, CURL. Of course these have different forms cependiny
on difference scheme and pecmetry; the forms in CARTESIAN are
appropriate for 3-D Cartesian peometry in which the operators are
defined in terms of central difference formulae.

Analytically

fcm@} —_— )
L i 3xk

In 3 dimensions, it is convenient te think nf the dimensions (x,y,z)

as (xl,xe.x3) vhich can be written es {(xi-l' X;s xi#l) / modulo 3}.

In terms of these we may vwrite

u u,
2 +
{curl(g)]i = L= (16)
axi,l axi_l
du. . du.
i.e. {curl(u) - . 22 (modulo 3 apain)
i s 4y xi)

The Algol procedure CURL is 7:fined by
CURL(U) = RP(DEL(RP(U))} - PM(DEL(RM(0))); (17)
in Symbolic Algol I. The procedure FP effectively increases the
index by unity, and R4 decreas~s it by unity. DEL is the analor of V
(see equation 9 above).
A test for CURL coulG be as follovs:~ Let f,, f?' f30 ¢ be eny
scalar functions of x,y,t. Construct s pzneral vector A s.t.

Ascurl (£, X+ T+2.3) + v (28)
- 3 2 3

Then for the differential operestors, the following 2 identities hold:-
diveurl A = O (19)
and

curl grad rl : 0 (20)

If the finite difference operators DIV, CURL, GRAD are defined in
terms of central differences on a Cartesian mesh, t.cse identities
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stiil hold. For a TESTBED for these, a TRIAL module would then
contain:
'RP* F1; Fli= (user's choice: e,p. x* + y* + z%);
'RP* F2; F2:= (user's choice: e.r. 3xyz);
'RP' F3; F3:= (user's choice: e.r. © + 3y +3);
xty+z
'RP* G; G:= (user's choice: e.p. e );
‘RPY A; A=
CURL(F1%E1 + F2*E2 + F3*E3) + GRAD(G);
and the printing PROCEDURES
PRINT VECTOR (CURL(GRAD(F1)};
PRINT SCALAR(DIV(CURL(A));
The output is of courze
0.0 0.0 0.0

and

0.0
The procedures El, E2, E3 come from the module ®ALGERFA®, and are
defined thus:-
'RP' E1; El:= if C eq 1 then 1 else O;
'RP' E2; E2:= if C eq 2 then 1 else O;
'RP' E3; E3i= if C eg 3 then 1 else 0;
vhere C is an index indicating which compcnent - x, ¥y or 2 ~ is
under considerstion. El, E2, E3 are in fact the unit vectors in the

Xy ¥, and ¢ directions respectively.

The modules of vhich the skeleton program DUMMYRUN is composed
have each been tested using the TESTBED apvrosch. The propressive way

in vhich such tests can be carried out is illustrated ia fipure 5.
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Listed along the top are the modules of which DUMMYRUN

is constructed. The staircase shows the systematic
way in which modules must be tested. For example
TESTBED4 requires 4 pre-tested modules (DUMMYHEAD,
OUTALGOL, ALGEBRA, CARTESIAN) in order to test
UTILITIES. TRIAL4 is the specially written module
containing the test material.
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5. Portability

Collaboration between the stsff of different laboratories can
often make desirable the rumning of the same computer propram on
different machines. The cransfer fron one mechine to encther can
be nade more quickly.if the chanpes which rust be rade ere locsl-
ised into regions where such chenres can be flapred.

A propram can be made more porteble in 3 seperete aress:-

i) By carefully avoiding, in the early mei« numbers cf a proprem ,
exploitation of the advanced features and quirks peculiar tc & machine
(ve are of course discussing proprums which in the past have teken at
least 1 man year to pet into production). In Fortran this mirht

imply for example restricting oneself st this tire to Fortran IV. In
Alpol,one avoids Jensen's device for example. In later versions,

some pieces of propgran can be renlaced by code tailored for a perticu-
lar machine end by fast assembler subroutines,

ii) Input and output should be lccalised anc flerred, If I/0

is restricted (for example) in Fortran to periicular subreutines it
ensbles the more sophisticsted I/0 psckares available cn sorme machines tc
be intrcduced eessily into the nropram on trensfer to these mechincs,
iii) Every machine mipht well es a matter cf coursc heve evailaule

s serics of tiny rrograms or macros which wili chenpe the cherncter
codes, (and in the case of Alpol alter the representsticn cf the ilrol
Lasic Symbols) from that used on cne mechine te that for ancther.

For the job control lanpuapes, while the vsriety of different machines
continues, there seenms nc better vay of prafting e prorram onto ar

wnfenilisr machine than having the aid of sormeone with locnl knevledre,

Thus, at the Culham Laboratory we are deliberately writ:ag our

Fortran programs in ASA Fortran 1V, which cnables a program to be
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-
portable, and incidentally to be publishable and open to the criti-
cism of other computational physicists. For example, since the name-
list facility is not implemented on all big machines, it is not used,
even though it is very convenient. In Algol, calls by value are
avoided since some compilers do not have this feature., Again, since
only the first six letters of an identifier are significant on an
IBM machine, the long identifiers are chosen with care to ensure the 1
distinct identity of each to the compiler.
For input and outnut, and the program transfer macros, we restrict
our atteution at this point to Algol; further comments on Fortran
are found in the appendix.

The Algol module OUTALGOL (see also section 3 above) has been

f written to contain the high level procedure calls required to make
simple-minded input and output requests, some of thcse are shown in
Figure 6 as they are implemented on the KDF9 at Culham. The inten-
tion is to hide detail, irrelevant in more physical contexts. The

.dvocacy of the use of such procedures, independent of im, lementation,

(5)

is not new, see for example Michie, et al We report that their
systematic use is worth the additional care in design initially. For
the implementation on an IBM 360 see Figure 7. Similar OUTALGOL |
modules have bee1 written for CDC 6600, the ICL 1900 series and
GE 235.

To effect transfer from one machine to another the character
code must be nlterad, and the Algol Basic symbols correctly represented.
For this purpose i‘he CACTUS package has been developed at Culham. On
the Culham KDF9, the COTAN on-line system, contains among its ccmmands
the facility for generating a "macro" command - i.e. a command which
blocks together a series of commands in a file and activates

(15)

them with a single command . Macros hase been written which change
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'PROCEIURE' OUTALGOL;
"BEGIN' IECD(\L-IAYOUT( '[ 'S-NDDD.DD']');
NTBGER=LAYOUT( '[ *S-NDDD']');0UT=10; 'END';
'INTEGER' DECIMAL,NTEGER,OUT;

*PROCEDURE' BLANK; SPACE(OUT,1);
"PROCEDURE' INTVAR(N); 'Mmm'n,mm(om,mm N);
' PROCEDURE ' NAME ,N) ; ' STRING 'NAME; ' INTEGER'N
"HEGIN' TEXT(NAME) ; BLANK;TEXT('[ '=']"); mrvu(n),'m'
'PROCEDURE' LINE; sNEWLIN(OUT 1) ;
'PROCEDURE' PAGE ;GAP(OUT, 1),

' PROCEDURE ' (T),'S‘I‘RIM'T ;WRITET(OUT,T);
Figure 6: The module *OUTALGOL* includes such procedures as the

above. REALVAR and RVAR are similar to INTVAR and IVAR.

'PROCEDURE' OUTALGOL.,
'BEGIN' OUT .= 1., 'END'.,
' INTEGER' OUT.,

'PROCEDURE' 3IANK., OUTSTRING(OUT,'(' ')').,
'PROCEDURE' INTVAR(N)., 'INTEGER'N., OUTINTEGER(OUT,N).,
'"PROCEDURE' IVAR(MNAME,N).,'STRING 'NAME. , ' INTEGER'N. ,

'BEGIN' TEXT(NAME) . ,BLANK. ,TEXT('('=")'). ,INTVAR(N)., 'END'.,
'"PROCEDURE' LINE., SYSACT(OUT,i4,1).,
'"PROCFDURE' PAGE., SYSACT(OLT,i15,1).,
'"PROCEDURE' TEXT(T)., °*STRING' T., OUTSTRING(OUT,T).,

Figure 7: Some OUTALGOL procedures used on an IBM 360.
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the repreaentation of Algol basic aymbols on the disc in such a way
that it comea to a Data Dynamics teletype in the form suitable for
vhichever machine is to be recipient. It is stored on the disc as
"Wheteg Algol” which is a subset of the representation acceptable to
the Whetatone compiler for instant execution and which is also accept-
able to our Egdon compiler for batch procesaing. This flexibility
enables the KDF9 to be used reasonably efficiently (viewed as a
uan +machine entity).

Given an Algol program in "Wheteg", it can be automatically
translated into the forms required for use on a CDC 6600, IBM 360,
ICL 1900 or GE 235, though still stored in an on-line file. The actual
transfer can occur in a very simple fashion: the ISO paper tape code
used by teletypes interfaces with all machines which can use teletypes.
Thus a paper tape can be produced for an Algol ,rogram which is then
read back to another teletype (or the rame one) connected up to a
different machine. Thus the existence of different card codes on the
various machines can be circumvented. The development of a program
on a machine with a fast compiler and good debugging facilities, and
the subsequent transfer to a machine with fast running times and a big

core seems an attractive method of cowputing effectively.

€, Initisl Cenditiors nncd Peuncarv Cenditions

The settine of ipitir) cenditions end beundrry cenfitiens is, in
e substantial corruter nreprar, e nuissnce. It takes ung in eedine
terrs, far rorc statements an¢ irvolves rere intricrte devices then
the body of the calculatior in which rest ef the tirc of the cornutation
is spent.

This nced not be so, and ve cescribe in this sectien some of the

tocls with vhich we hsve preovided curselves. ome of these ccould be
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produced in Fortran, but there is no doubt that the availability cf
parameterless rrorcdures in Alpcl is a boon.
For examrle it is convenient to be sble tc set the values of

an errey in e sirple fashion., {ensicer the trirlet of Alrcl

statements -
Tv0O D3
FULL FECION;

SET SCALAR(TYI CIL(P*PIE*Y)*c1n(P*PIE*Y));

This sets the rotentiel of ¢ over the whcle rerion of interest in e

of rarsmeters and reneral svradevork needs tc lLe dene sorcwhere, but not
at this point where ve are only concerned with the metheraticel
formulation of the physics of the precbler. Further assiFmment of
values is not & clumgy matter but can be done tcrscly, ns cnn best

be rmacc clear by scttine down the centerntr of the abeve procedures.

1 rrocedure TVC u; bepin KDIK:s 23 I:= J:s C; K:= <1; %K:s C; end;

(the rrebler is declared te be 2D, the velues cf I and J erc
clcared, and the k-direction iz rut out),

rrocedure FULL PEGIOL; berin IFl:s JPl:= KFl:s €, 170:= L1, JPP:= 1J,

KPP = LK, end;
(the upner and lowver hounds fer the arrrv indexcs nre set in

terms of the erray sizes).

procedure SET SCALAR (A,F); aricy A; real F;
begin procedure SETS2(K); integer K;
for J:= JPI step 1 until JP2 do
for I:= 1P1 step 1 until 1P2 do
begin 0:= 1 + (I + 1) + PI*(J + 1) + PI*PJ*(K + 1);
Alol:= F; end ;
if NDIM eq 2 then SET S2(~1);
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else for K:= KPl step 1 until KP2 do SET S2 (K);

(the array A is set to have the function value F evaluated at

the relevant point on the lattice).

To set the value in 3} dimensions of the magnetic field B for each
of its components Bx. By, Bz in the interior of the region of i{ztciest
we may write

THREED,

INTERIOR REGION;

SET VECTOR (AB, Z*Z*El + 0.5%*X*Z*E2 + X*E3);

This sets the magnetic field to be

2. L2X, X)

B = (z
El, E2, EJ are the unit vectors Jefined earlier (in section 4);
AB(C,0) is an array with 2 arguments: C (which determines the component
x,y,z) and 0 (which determines the current lattice point),
The decloration
real procedur: B; B:= AB(C,0);
cnables B to be used in cquations for the magnetic field as vector B
would be.
An alternativce approach is to use 3 componcut arrays
8X.0_, BY.0l, BZlO.
rather than the single arrav AB(C,0). Obviously a powerful technique

should not be tied to a decision on how to store the intormation about the

magnetic field.

In terms of these 3 arrays, we could sct up B with the procedure calls
THREE D;

INTERIOR REGION;

SET SCALAR (BX, Z*Z);

SET SCALAR (BY, 0.5%X*Z);

SET SCALAR (BZ, X);
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Another set of useful procedures lnvolves setting values on lines
and surfaces inside the region of interest. These are all tiny pro-
¢ dures, where the purpose of defining them is to remove the mechanics
of the computing from the focus of attention. For example

procedure SET XLINE (A, JJ, KK, F); array A; real F; integer JJ, KK;

begin J:= JJ; K:= KK;
for 1:~ 1Pl step 1 until 1P2 do
begin DEFINE O; A[0):= F; end end
This sets the elements of the array A, corresponding to points on the
line y = yj Z=z (i.e. J = JJ; K = KK) to have the functional values F.
This ruled line provides a simple way of getting values on a plane
surfece parallel to an axis. Thus

rocedure SET YZ SURFACE (A,11,F); array A; real F; integer Il;

for K:= KP1 step 1 until KP2 do
SET YLINE (A,ll,K,Fk

sets A = ¥ on the surface x = X (l.e. 1 = 1D
These hierarchic definitions enable one to program as clearly as onc can
write mathematics.

Similarly with boundary values, if the boundary conditions can be
set easily and can be seen to have becn set correctly, a program is simp-
ler to handle. The setting of some of the possible boundary conditions at

the wall for a plasma experiment are shown in figure 8.

WALL;

GUARDY{ PEC ,PICLL,7EPC, TEFO,CINFLE STEPS TO,N1);

CUAPDX(J? SYIVETPIC,ZEFN,  Y-CTACCEFFT PT,TOUPLF CTEPT 77 N1); Fr.t

GUAPDY (TP FICID,TCR78(1.7),  ZFRO,NCURLT CTEPE T0,51)3

The procecure ¥/1L (besices rctins as n pararrerh heedinr) sets
the current cririn or the wnll eré arranpres fer it tc 1cve alone in
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the x-direction setting suitable velues. The yprocecure GUAFDX has rmnercric

arpurents to make the boundary conditions cleer. The use of meronics
is important for althouph the anelytic condition mey be simple, the
difference form is often messy. The first set of arpruments cefines
the physics. Fer example, ve heve a rigid boundery om vhich the
density is set to zero, and the termerature to T 7(1-7). The z
component of the electric current j is set to zero, ard sc is itz rracdient.
The second set of arruments nick out the roints vhere values zre to be
set. For exarnle, using a learfrce schere one rev cnly need vrlues
at slternate roints, the mesh in use shiftines by one interval between
rlterneting tirme sters, The starling vecint is shiftec¢ brckvares rnd
forvards by X-STAGGEFELTT, and values arc set st alternste neints ur te
point 1 = jil,
7. Flexibility

The flexibility of a moduler structure, rrorerly censtructec,
ensbles trisrazs to b2 developed cuickly., [Lachk mecule, besices
being fully tested hes s correspending curmy redule. This is
composed of the same procecdures »8 the full bodied rocule tut ersch
is cdumy. Cuch durmy rmocdules enable parts of the rrorrer to be
hcrourhly tested without vasting tire in execution and comrilrtion

on other pieces nf prorrar known %o be in vorking orcer.

1f havang developed a program we decide to change the method of
solution of the differential equation, if the program is sufficiently
medular tu:s can be achieved by the simple substitution of one form for
another. This can best be seen in a concrete example.

Thus, let us consider a one-c imensional plasma made up of electron
and ion (singly iomized) fluids whose distribution functions satisfy the

linearized Vlasov equations appropriate for a collisionless plasma
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afe d -
ot 5, (v £) + 5 (aefe) =0

(21)
-

where fe' and fi are the electron and ion distribution functions

w + 3; (vifi) + FV- (aifi)

Vs and Vi are the velocities of the local elements of the fluids

a,, and a, are the accelerations to which they are subjected.

The accelerations ae, and a; satisfy

m.a, = -ma, = e (22)
where

E L 4ve | (£ ¢ Yav (23)

3; J g 1
the velocities f and vy satisfy

@
dt m
e

and s (24)

i e (

dt m, ]

i

A

The plasma is assumed collisionless, and the ions and electrons interact
only in as much as each species contributes to the electric field which
acts on both of them.

To treat these equation; by a finite difference method was advoca-
ted by Kellogg in 1965(6). Of course several other methods have been
advocated and implemented tor this, e.g. the Waterbag Model (for the
history of this see Berk and Roberts 1967(7), expansion in terms of
Fourier components and orthogonal pulynomials(s’g) and the popular
sheet/rod model developed by Buneman and D;wsun(lo’llx

This approach does have its drawbacks(lZ), but is used here to
illustrate the strength of symbolic techniques,  Such techniques could

be used in the other cases also,
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The computational steps are clearly

solve Poisson's equation;
ion fluid advected;
Electron fluid advected;

preceereen=)
]
Y

For a leapfrog scheme, the advection of the equations can be

gathered together into a single procedure (Fig.9).

(]

[]

' ' PROCEDURE ' LEAPFROG; *BEGIN'DT=0. 5*DELTAT;
! "FOR' T'EQUAL' IP1'STEP' 1' UNTIL' IP2' DO’

! 'FOR'J'EQUAL'JP1'STEP' 1' UNTIL' JF2' DO’

' 'BEGIN'DEFINE O;

! NEW FE[0]=FE-DT*(DELX(VE*FE) + DELV(AE*FE));

! NEW FI1[0]=FI-DT*(DELX(VI*FI) + DELV(AI*FI));

] 'END'; 'END';

(]
[}

Cececccccccrecccced

1P1, IP2, JPl, JP2 are the bounds for I and J. FE is a procedure
which returns the value of the electron phase fluid density appropri-
ate for the current lattice point. It should be added that these
difference equations, although apparently a forward difference in
time, are actually centred in time and space. The procedure DT is
set to 0.5*DELTAT where DELTAT is the time step interval. As quanti-
ties are defined on a staggered mesh, they are available at the correct
cime level when required:

Thus in this case we may write simply

SOLVE POISSONS EQUATION;
LEAPFROG;

in the Symbolic equations module.
For a two-step Lax-Wendroff scheme, provisional values at an inter-
mediate timestep must be calculated. The module could take the form of

Fig. 10.

Fig.9
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'PROCEDURE' AUXILIARY CALCULATION: ‘'BEGIN'DT = DELTAT;

'REAL' 'PROCEDURE' ELECTRON PHASE FLUX;

ELECTRON ms—_'(m) + DELV(AE*FE);

'REAL' 'PROCEDURE' 10N PHASE FLUX
10N PHASE FIUX = (v_m") + DELV(AI*F1);

'REAL' 'PROCEDURE’ FE NEW:

“E NEW = SAV(FE] - DI*ELECTRON PHAST FLIUX;
'REAL' 'PROCEDURE' F1 NEW;

F1 NE¥ « SAV(FI) - DT~10N PHASE FLUX;

FILL THE AUXILIARY POINTS'.'

'FOR' 1 'EQUAL' IP1 'STEP' 1 'UNTIL' IP2 'DO'
'FOR' J 'EQUAL' JP2 'STEP' 1 'UNTIL’ JP2 'DO'
'BEGIN' DEFINE 0;

C = 2; NORTH = 0+DOY;
NEW FE{NORTH] = EP(FE m;
MEW FI[NORTH] = EP(FI NFW
SOUTH = 0-DOY;
NEW FE{ SOUTH] = BM{FE m;
NEW FI[ SOUTH] = BM(FI NEW
CC = 13 EAST = 0+DOX:
NEN FE{FAST] = EP?‘E mg

NEW FI[EAST] « EP(F1 NEW):
WEST = 0-DOX;

NEW FE{WEST] = BM(FE NEW

NEM FI[WEST] = BM(FI NEW

'm';
Figure 10: A 'procedure' AUXILIARY CALCULATION, for use in a

2-step Lax-Wendroff scheme. Procedures FE NEW and
FI NEW contain a clear statement of hcw the first

step of the scheme works.

In this case the Symbolic equations module contains

LAX WENDROFF TWO STEP'.’
SOLVE POISSONS EQUATION;
AUXILIARY CALCULATION;
SOLVE POISSON FOR AUXILIARY VALUES;
LEAPFROG;

Provided the modules have been properly constructed, the change {rom

one numerical difference scheme to another simply requires the replace-
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ment of one set by another (e.g. the Lax-Wendroff module is replaced

by the leapfrog one). This makes the comparison of the different

methods over such matters as speed, gross accuracy, and in particular

velocity dispersion, a fairly straightforward matter. With the develop-
(13)

ment of advanced methods such as Fromm's hybrid Lax-Wendroff the

close monitoring of methods becomes of greater interest.

Conclusions

Many program; could be written with less wear and tear on the
physicist (and with shorter development times) by adopting methodical
techniques of prefabrication such as those describod here.

The use of symbolic methods provides a way of defining a physical
problem clearly in computational terms. Algol and Algol-like lan; 'ages
are well suited to the symbolic approach especially for the parts of
program dealing with the logic and the physical equations; in Fortran
a control package for time-dependent proplems, and the use of pre-

fabrication with acceptance tests has been successfully introduced.
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APPENDIX ]

A UNIVERSAL CONTROL PACKAGE FOR FORTRAN PROGRAMS f

Many time-dependent 3imulation programs are currently being written, g

and most of these are still programmed in Fortran. Whatever the speci-
fied set of differential equations may be, these programs usually have
to carry out the same control processes, and the same general steps in

the calculation, e.g. k
DEFINE INITIAL CONDITIONS
START THE RUN
INITIAL OUTPUT

and so on, Often this part takes longest to write, and is hardest for

newcomers to understand.

A Universal Control Package (UCP) is therefore being written at
Culham which will contain a main control subroutine MAIN, together
with utility and diagnostic subroutines, and which will form the
foundation upon which a variety of actual simulation programs can
subsequently be built. The package is being written in ASA Fortran,
so that it can be used on any computer system with only trivial modifica-
tions. Because of this standardization of the structure, it should be
easier for collaborating groups to exchange programs.

So far as possible UCP shares a common structure with DUMMYRUN,
e.g. the Algol Procedure calls of MAIN CONTROL appear as comments in the
UCP routine MAIN. (Fig.11). UCP is however less general, because there
are no analogues for the svmbolic modules which deal with vector algebra
and analysis.

Development and Diagnostics

It has been found useful to 'grow' an actual simulation program

from UCP like a tree, checking it out at each stage by means of both
standard and ad hoc diagnostic subroutines. Typical examples of
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SUBROUTINE MAIN
MAIN CONTROL

3 N »

COMMON /COMUCP/

DELTAT, T

NONLIN, NOUT, NFPRINT,
NSTART, NSTEP, NSTOP,

NREAD,

[ NN Nl

1 PROLOGUE

LABEL THE RUN
CALL TABRUN

CLEAR VARIABLES AND ARRAYS
CALL CLEAR

CALL REPORT(1,1)

CALL REPORT(1,2)

C  SET DEFAULT VALUES
CALL PRESET
CALL REPORT(1,3)
C  DEFINE DATA SPECIFIC TO RUN
CALL DATA
CALL REPORT(1,4)
C  SET AUXILIARY VALUES
CALL AUXVAL
CALL REPORT(1,5)
C  DEFINE INITIAL CONDITIONS
CALJ, INCOND
CALL REPORT(1,6)
C  START THE RN
CALL START
CALL REPORT(1,7)
C  INITIAL OQUTIUT
CALL DSP1AY(1)
CALL REPORT(1,8)
c
C .
cL 2 VAIN CALCULATION '00P
c
DO 20 NSTEP=NSTART.NSTOP
C
T=T+DELTAT
C  ADVANCE ONE TIMESTEP
CALL STEPON
c
€  OUTPUY IF REQUIRED
CALL DSPIAY(2)
c
20  CONTINUE
CALL REPCRT(1,9)
c
c
cL 3 EPILOGUE
c
NSTEP=)STOP
€  FINAL OUTPUT
Figure 11: The UCP FORTRAN routine MAIN. The structure is

similar to that for MAIN CONTROL in DUMMYRUN (using ALGOL)
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standard subroutines are

MECAGE 2rint a message of up to 48 characters
IVAR Print 'NAME = < integer value >'
RVAR Print 'NAME = < real value >'

while a useful &d hoc subroutine is

CLIST List names and values of all common non-
subscripted variables in alphanumeric

order, using IVAF and RVAR
These subroutines allow information to be extracted very easily at
critical points of a test run by inserting single cards, without the
need for format statements. Preferably, all the diagnoscic tests
are grouped together in a single ad hoc subroutine REPORT,which is
called at suitable {atervals by the main part of the program (Fig. 1l1).
In this way, the program itself remains undisturbed.

For illustration, we consider the development of the FORTRAN
version of TRINITY(l). 1nis i3 now being generalized sc chat it can
deal with a 50x60x60 mesh., The 8Mbytes of data will be stored on
2 IBM 2301 drums on an IBM 360/91 configuration, and transferred in
and out of the core each timestep, using a rotating quadruple buffer,
a generalization of the triple buffer used in CALAXY(a). Of these,
three sections of the buffer deal with the central plane (0) which is
being calculated, and those on either side (N and S) which are needed
by the difference scheme. The fourth or 'move' section (M) handles
the data transfer. During the first part of the calculation of each
plane, data i{s transferred out from the fac-south plane (FS) on to the
drums on two separate channels. Halfway through, the direction of data
transfer is switched to bring data in for the far-north plane (FN),

The logic of such a scheme is quite complex, since it involves
the alternation implied by the leapfrog difference scheme, as well as
periodicity, guard points on the borders, rotating buffers, switches
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in the direction of data flow, and keeping count of the location of
360 separate tracks on the drums. The logic can however be checked
out independently of the phvsics, and, to a large extent, without any
sctual transfer of data. To do this, we re¢place those subroutines
which do the actual work by dummies, which simply print out messages
saying what tiev are meant to do - a 'rehearsal' for the real calcula-
tion, as it were. A smsll mesh can also be used for the tests, so
that not too much printout is generated. Fig.l2 shows an example,
for which the GO step occupied only 0.28 secs of IBM 360/91 CPU time.
The first two sections print out names and values of the variables in
the Common blocks COMESH, COMUCP by weans of statements

CALL CLIST™
CALL CLISTU

while section 3 is generated by subroutines called by MAIN. Section 4
monitors the logic of the calculation, using a 4x6x8 mesh. The output
is generated by statements such as

CALL IVAR('ROW',J)

CALL IVAR(’S-PLANE',MCS)
Using this type of methodical approach, it is being bund that programs
can be checked out much more quickly and economically than by the

usual methods.
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CONTROL BLOCK
NONLIN = 6
NPKINT = 6
NREAD = 5
NSTART = 0]
NSTEP = [v]
NSTOP = 2
DELTAT = 0.1000E 00
T = 0.0
ROUTINE = I, POINT = 7
OUTPUT = 1
ROUTINE - 1, POINT = 8
STEP = 0
S=-PLANE = 2
0-PLANE = 3
N-PLANE = 0]
M-PLANE = 1
STORE C-PLANE ON DRUM
C-PLANE = 1
D=PLANC = 5
CALCULATE ROW
ROW = 2
PLANE = 2
1-FIRST = 2
CALCULATE ROW
ROW = 3
PLANE = 2
I-FIRST = 3
FETCH D-PLANE FROM DRUM
C-PLANE = 1
D-PLANE = 3

Output from test runs for TRINITY using a small number

of mesh pointg for which the structure is checked out.

194

il




10.

11.

12.

13.
14.

15.

el aiinco

Symbolic Programming

References

Roberts K.V., and Soris J.P., "Trinity: Programs for 3D
Magnetohydrodynamics', IPPS Computationsl Physics Conference,
Culham (1969), paper 44. (Report CLM-CP (1969), H.M.S.0.).
Kuo-Petravic, G., Potravic, M., and Roberts K.V., 'The Translation
of Symbolic Algol I into Symbolic Algol II by the Stage 2 Macro
Processor'. IPPS Computational Physics Confercnce (1970).

Roberts K.V., and Boris J.P., The Solution of PDE Using a
Symbolic Style uf Algol (to be published).

Boris J.P., and Roberts K.V., ’Galaxy’, IPPS Comp.Phys.Conference,
Culham (1969) paper 4 (Report CLM-CP,H.M.S.0.)

Michie D., Ortony A., Burstall R.M., (1968) Computer Programming
for Schools (?)

Kellogg P.J., (1965) Phys.Fluids 8,102,

Berk H.L., and Robcrts K.V., (1967) Phys.Fluids 10, 1973,
Knorr G., (1963) Z Natur forsch. 18a, 1304.

A.zstrong T.P., (1967) Phys.Fluids 10, 1269.

Buneman 0., (1959) Phys.Rev. 115, 503.

Dawson J.M., (1962) Phys.Fluids 5, 445.

Roberts K.V , and Weiss K.0., (1966) Math.Comp. 20, 272.
Fromm J.E., (1968) Journal Comput.Physics 3, 176.

Petravic M., Kuo-Petravic G., and Roberts K.V., ’A Program for
the Automatic Production of Computer Codes from Difference

Equations'. IPPS Computational Physicas Conference (1970).

A User’s Guide to COTAN (1968) Culham Labccatory KDF9 wmanual,
Section 8.

195




Wave Kinetic Equation Emulation by Numerical
Particle-in-Cell Simuiation Methods
F. D. Tappert, W. J. Cokc. R. H. Hardin. aad N. J. Zabusky

Bell Telephone Laborasories, Incorporated
Whippany. New Jersey

The wave kinetic equation has been used in the
theory of nonlinear propagation cf acoustic waves in solidsl,
surface gravity waves in liquidsz, and various types of
waves in plasmas3. This equation describes waves in terms
of a quaslparticle phase space distribution furction f(x,k,t)

which obeys 2 Boltzmann-like kinetic equation:

LT
%
+
w!w
1 <€

where w({,g) is the linear dispersion relation, CE represents
the elastlc wave-wave collision (scattering) integral, and Cl
accounts for inelastic coliisions (atsorption and emission of
waves). In practice, conditions may occur such that the wave
collislcnal mear. free paths are very large, tut collective ef-
fects assoclated with the nornlinear freguency sh:ifts cannot te

neglected. Assumirgthat the nonlinear dispersion relatiocn
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has been drtermined to be w = w(x,k,0), one then obtains
the collisionless, self-nonsistent wave kinetic equation

{SCWKE) :

(2)

8
+
Y
xje
=§’l&’
—
' "lg

ol

~

:w'n

where p(x,t) = If(g,g.t)dg, and B = dw/3p. A detalled
discussion of the derivation and properties of SCWKE 1is
given elsewhereu. In this paper, we study in depth the
numerical particle-in-cell (PIC)5'6'7 method as applied
to the solution of Eg. (2).

The basic 1dea 1s to represent f in the form of a

KlimontovichB distrihution:
is]

In a Lagranglian manner, f 1s convected by numerically

integrating the quasiparticle equations of motion,

AT o SRR R (%)
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f Self-consistency is assured by recomputing p(x,t) at each
time on a fixed (Eulerian) sratial lattice. Heuristlcally, )
one expects that this method produces an approximation which
converges, in some sense, to the solution of the SCWKE as

N + », The present naper presents a first careful study
that will provide guidance to determ!ne convergence of

PIC methods.

The above described approach nas been investigated
by appl:r!ing it to the propagation in a plasma cof transverse,
linearly polarized, nlane electromagnetic waves as modeled

by the equation

A
where A is the vectur potentilal, ¢ is the speed of light,
up is the plasma frequency (here taken to be constant),
and e and m are the electron charge and mass. The non-
linear effect in Eq. (5) arises from the relativistic
increase in electron mass. For small-but-finite field
amplitudes, the nonlinear dispersion relation which fol-

lows from Eq. (5) 1s given by9’1°

%
W= c2k2+u2(1-£-£<2£§->) i (6)
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]
where angular brackets denote an average over the high
frequency oscillations (the wave envelope 1s assumed to

vary slowly). After normalizing f to

2
It‘(x,k,t)dk = p(x,t) = = <A2(x.t)> R (7
me

the SCWKE becomes

2
2 3w
af . c 'k 3f 92 3f
3t xto X3 0. (8)

In order to validate this method, the following
basic questions should be answerel: first, how well do
solutions of the SCWKE approximate solutions of Eq. (5)7,
and second, how well does the PIC technique approximate solu-
tions of Eq. (8)? We have therefore studied in detall two
problems where solutions of the SCWKE can be obtained
analytically: 1) llnear dispersive spreading of Gaussian
wave packets; 2) nonlinear stationary wave packets wherein

nonlinear self-trapping balances dispersive spreading.

#
This 1s not a statistical average ar we are concerned here
with coherent waves. A more precise definition can be given

in terms of the analytic signal concept.u
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1. After linearizing Eq. (5) at zero amplitude

(er/mc2 + 0), one obtains the following asymptotic solution

for Gaussian wave packets (koo >> 1):

k )2

- (x-ckot/wo
A(x,t) = A°<m) exp| - ——;;—2—(;— cos(kox-wnt+qt), (9)

%
22,2 2 2 L 42,62
where w, = (koc +wp) , 0°(t) o + ¢ wpt /woc , and q
is a complicated function of x and t. The corresponding

asymptotic solution of Lq. (8) is

2
eA 2
rix,k,t)} -(-—-—g-) %r' exp[—oz(k-ko)a-(x-ckot/wo-wscz(k-!{o)t/wg) /o
me
(10)
and
. 2,2
eA - (x-ek_ t/w ) /0°(t)
p(x,t) = lr(——q-) e e=m e (11)
Y mc2 a(t)
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We see that p(x,t) = e2<§€>/m2cu, which demonstrates that
the wave kinetic equation is able to describe correctly
dispersive spreading, a coherent wave process.. Fig. la
shows the result, #t several different times, of a numerical
integration of Eq. (5) using a finite difference technique.
The initial conditions agree with Ej. (9) and er/mc2 + 0.
At the bottom of each diagram is the numerically computed
contour plot of f(x,k,c) as calculated directly from its
analytic clet‘initionll at each time. Corresponding PIC
calculations are shown in Fig. 1b (random loading) and
Fig. lc (uniform 'oading). The rms pulse width as obtained
from the PIC simulation is compared to the above theory in
Fig. 2, which shows the excellent agreement.

2. Asymptotic solutions of Eq. (5) with a stationary
envelope (called "envelope solitons", or for brevity, E-solitons)

11 12

can be found following the method of Karpman™—, and Taniuti~“,

et al. to be

2 2 2
x-c“k _ t/w 3w eA
- Ao I ) - e o Ty o
Alx,t) Aosech( 3 )cos kx-uw t + Tou, (;:3) t+al,

3

»
Kadomtsev” states a contrary opinion,
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Fig. 1. Dispersive spreading of a linear Gaussian wave packet, uglczk: =0.2,
kgo = 5. (a) Numerical solution of Eq. (5), ckgAt = koAx = 0.1. Also shown are
contours of f(x.k,t) = const. (levels are separated by a factor of two). (b) PIC
solution of Eq. (8) with randora loading, ckgAt = kgAx = 1,0, N = 2000, Theden-
sity is also shown together with a Gaussian fit. (c) PIC solution of Eq.(8) with
uniform loading, otherwise same as (b).

202




P R R R INNG DT L W S YT BT SIS ey Rt
: v ; T e A

o

a4 M w72

e

Wave Kinetic Equation Simulation

8
T

STANDARD DEVIATION

] ] l ]
00 100 200 300 400 500
TIME

Fig. 2. Dispersive spreading of a linear Gaussian wave packet,
03/c?k} = 0.2, kgo = 5. Standard deviation (in units of 1/ko) vs.
time (in units of 1/cko). Conditions same as in Fig. 1, Solid
line: theory and numerical solution of Eq. (5), weighted with the
energy density, Circles: PIC with random loading. Triangles:
PIC with uniform loading.
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where o = Uc/[V3 mo(er/mca)], a is an arbitrary constant,
and we have assumed that koo >> 1 and er/mc2 is small but
finite. The corresponding solution of the SCWKE can be
found following the method of Bohm-Grossl3 and Bernstein-
Green-l(ruskallu. Assuming narrow bandwidth (Ak/ko << 1) and
no untrapped quasiparticles, stationary solutions of Eq. (8)

are given by

%
2

eA el
f(x’k:t) ‘(—3‘)% p(x-°kot/“o) = 1‘(.“—%) Gz(k-ko)a ’ (13)
me

(]

and £ = 0 where the radicand 1s negative. Here p= erk

is an arbitrary function and o is given by the same formula

as above. Choosirg p(x) = !g(er/ch)2 sechz(x/a), glves the
E-soliton corresponding to Eq. (12). Fig. 3a shows a numerical
solution of Eq. (5) having initial conditions in agreement

3 with Eq. (12) and eA /mc? = 0.25. Note, that although

F wavelets move through the packet, the envelope and phase

space distribution are stationary. The corresponding PIC
simulation 1s shown in Fig. 3b. The observed stationarity

g of the density (the particles of course execute a vortex-

like motion in phase space) 1s remarkable.

204




Wave Kinetic Equation Simulation

(a) (b)
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Fig. 3. Stationary E-solution, ®3/c?k3 = 0.2, eAg/mc? = 0.25, koo = 8.5. (a) Nu-
merical solution of Eq. (5), ckoAt = kgAx = 0.1, Also shown are contours of
f(x.k,t) = const. (levels zre separated by a factor of two)., (b) PIC solution of Eq.
(8) with uniform loading, ckgAt = 2kgAx = 1,0, N = 6700, The densityisalso shown.
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The avallability of exact nonlinear solutions of
the SCWKE provides an opportunity to study in depth various
techniques assoclated with the PIC method. The following

areas have been investigated theoretically and by numerical

. e

experimentation:

s

Ly

1. Initial loadiﬂg; Given f(x,k,0), how does one
choose the initial quasiparticle coordinates
and momenta, Xy and ki’ i=1,2,...,N7 We have :
vsed random, semi-random, and several uniform

loading methods in order to reduce fluctuation

levels.

2. Self-consistent force computation, It is necessary
to smonth the interaction in some way to reduce
the discrete particle effects. We have used "area
weighting", "force interpolation", and Fourier

transform smoothing (equivalent to extended particles).

3. Time integration (stability, truncation and roundoff

error accumulation). Using a centered, second-order
leap-frog scheme, we have observed that when cAt/Ax > b
a strong numerical instability develops which conserves

energy but throws the quasiparticles into a low entropy,

highly structured (osecillatory) state.
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4§, Cell size and number of quasiparticles. Gilven

the initial ccndition, how does one choose the
optimal Ax and N? We have found that when N-4x/¢
is sufficiently small, large fluctuations develop
which lead to instabllity.

In summary, we have demonstrated that the SCWKE
together with PIC numerical techniques provide an efficlent,
versatile, and powerful method for solving a varlety of problems
concerning nonlinear wave propagation.

We would 1like to thank R. J. Mason for helpful
advice about PIC techniques.
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Three-Dimensional Numerical Experiments
o Penetrative Convection in a Rotating Fluid*

Steve A. Piacsek
Applied Mathematics Division
Argonne National Laboratory

Argonne, lllinois

ABSTRACT

Yumerical experiments were performed to simulate convection
curreiit., that arise when fluid in a rectangular geometry is rotated
with coastant angular velocity and cooled with uniform heat flux
both from above and below. The time development of the mesn-equare
vorticity components showed equipartition for circulations in all
planes. The convection rolls with axes parallel to the x- and
y-axes exchanged energy for about 5 cyclee, whereas the cyclonic
circulations about the vertical axis maintained the eame energy as
the mean of the rolls.

A comparison of th- ieotherms with circulation 'ines ehowed
that the strong divergence of horizontal motion, in regione of
falling blobs of cold fluid from the gravitationally unetable top
layer, is responsible for the generation of vertical vorticity through
the Coriolie term 20 %% + An examination of the horizontal planforms
of motion revealed _he exietence of a weak, four-lobed jet stream

meandering around fcur centers of etrong, cloeed cyclonic circulations.

*
Supported by the Office of Naval Research under contract #fM00014-67~A-
0242-0003.
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THREE-DIMESRSIGNAL NUMERICAL EXPERIMENTS ON PENETRATIVE
CONVECTION IN A RWOTATING FLUID

1. Introduction:

Many situations occur in nature in which the convection currents
that arise in gravitationally unstable fluid layers are bounded below
or above by positively or neutrally stable layers. 1n the former case,
the stable layer is penetratecd to a certain extent by the rising or
descending thermal columns but remains stable on the whole., 1n the
latter case the convection currents will soon involve all of the acceu-
sible fluid volume,

Some of the natural phenomena that exhibit such processes are the
atmospheric thermals and cumulus towers impinging on stably stratified
layers above, including inversions and the tropopause; evaporation-

driven ocean currents penetrating into lower regions stably stratified

by solar radiation, or seasonal cooling effects reaching down to the
thermocline; convection in the sun and stars in layers where radiation
causes a super-adiabatic temperature gradient, bounded both below and
above by stable lvyers. Often the penetration currents are coupled to
larger-scale general circulations, and their mutual interaction is of
great interest to geo- and astrophysicists.

When the scale of the convection currents is sufficientiy large
(L >> 10 m» in the ocean or L >> 5C m in the atmosphere) the Coriolis
force due to the earh's rotation provides the main balance to the buoy-

ancy forces. On such lcngth scales the nonlinear advective terms and

the fricticon terms play only a secondary role and the resulting motion

is called ";eoctrophic."1
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Penetrative Convection in Rotating Field

Geostrophic motion that is driven by buoyancy forces due to
horizontal temperature gradients is also known as the "thermal" wind,
and its associated instabilities as "baroclinic 1nstab111t1es."2-h
Moat commonly known forms of thege instabilities occur in cases where
the thermal wind is a result of ecternally apnlied horizontal tempera-
ture contrasts. The atmospheric jet stream may be re;arded as an ex-
ample of such “strong" baroclinic instability, meandering between warm
southern and cold northern latitudes in an easterly direction. But
horizontal temperature contrcsts can also result between up- and down~
moving thermals in convection due to vertically imposcd heat fluxes or
temperature contrasts; the correaponding theraal wind may give ris~ to
a "weak" baroclinic instability. A weak jet connecting or circumventing
a group of closed circulation cells or cyclones is an example of such
instability.

Geophysical fluid dynamicists have attempted and succeeded to model
these instabilities in the laboratory and on the computer by designing
experiments in which the relevant non-dimensional pa~ameters have been
chosen to approximate the values that are associated with the correspond-
ing natural pl-xeno-ena.'-"-8 These parameters will be defined in the
following section where the governing equations are introduced and non-
dimensionalized. The advantages of such model experiments are the atrict
control which can be exercised over the parameters determing the flow, and
the possibility of iaolating the sever:i comcurring processes to study
each separately.

The present numerical experiment deals with a situation in which a
stably stratiffed fluid is cooled from above and undergoes rotation at the
same time. Heating from below would lead to sn fdentical dynaaic situa-

tion. Corresponding natural phenomena are:
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a) the top layer of the ocean (say 200 m), cooled by evapora-
tion and infra-red radiation at the surface and stratified
by solar radiation and sensible heat exchange {i.e., molecular
warming by the air);
b) the bottom layers of a planetary atmosplere \say 5000 m),
heated at the surface by solar radiation and <‘.ably stratified
by advective and other radiative procesces.
The main purpose of the experiment is to exhibit the existence of a
"weak" jet stream that connects cyclones of strong circulation about the
downward plunging cold thermals from the surface.
The vorticity/vector potential approach has been chosen for formu-
lating the three-dimensional flow problem, since the fluid is assumed
to be incompressible and located in a simply-connected, cartesian geometry.
This approach has some advantages over the velocity-pressure ("primitive")
form of the hydrodynamic equations, where the nonvanishing of the divergence
3-; = D due to round-off errors can cause conservation problems in the ad-

vection tetms.s-lo

II, Governing Equations and Nondimensional Parameters:

The fluid is assumed to be contained in a rectangular volume bounded
by planes x = O,L, y = O,L, and z = 0,D. The rotation vector ] points
along the positive z-axis and the gravitational acceleration z along the
negative z-axis, Im a cartesian eoordimate system rotating with angular

velocity f the Navier-Stokes equations for viscous flow may be written
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Penetrative Convection in Rotating Field

->

[ [g—:+ (-\:-3): + Zﬁxﬁ] = -V7p + uvzc -pg 2z . (.)
L

The equations of continuity and thermodynamic state are replaced by

the so-called Boussinesq approximation, in which the fluid is assumed

to be incompressible in all terms of equation (1) except the buoyancy

term, .rd cte density depends linearly on the temperature., Thus

<.N
(38 4

=0 (2)
p = p°[1 - a(T-To)] (3;

where o and ’ro are the ambient density and temperature of the flu.d.

In this approximation (1) may be ;awritten as

->
By Gl - - §2 % it ) “
o

with v = u/po being the coefficient of kinematic viscosity and o the

coefficient of thermal expansion, For the ssme approximation the equation

of heat transfer becomes

-:—: + (e 7)T = K§2T (5)

where x = K/pocp is the coefficient of thermometric diffusivity. Both
diffusion coefficients are assumed ¢o be independent of temperature as

these variations play only a minor role in the flow mechanisams. The

A RS S

following dimensional scaling is introduced now for all the physical

i variables [u,v,w being components of the velocity vector]

TP
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(x,y) = L(x',y") p = Pep'

z = Doz’ t = rot!

(6)
= (u,v) = UQu',v') T-To = AT.T!

we Wey!

From ?--\: = 0 it follows that % = g and that ('\:-—V')'\: - g (-\:'-3')'\:. By

introducing the nondimensional operators
T ‘+£)2.3_; (7(a))
ox' By y D

2| .2 2 o2
72 u % NP oy ) (7(b))
axlz ay'z 32'2

equation (4) may be written {dropping the primes)

> -~
W AT+ 2000 - - PI Vrp + X gegy
3L ' D p UL 2
[} D
(8)

+--3-—°‘3T'T *T.

The time scale t is chosen to be that of momentum diffusion, and the
velocity scale W that of advection balancing it, i.e.,
p? ¥ p°UvL

TRV Weg, P

- (9(a,b)
D
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Then (8) becomes

* 2 A .p3
-g%-l- @-u + -2‘)& ZXU) = -3'1) + V20 + Q-EA':—D T (10)
v

and the heat equation

AL BHr = . g2

=+ @NDT=L.vr, ay)
The following definitions are customary:

n3
Grashof number Gr = 93-'%2- (12(a)
v
in2pk
Taylor number Ta = -Q?D— 12(v))
v

Prandtl number Pr=x/v . (12(c))
The fiual form of the transport equations becomes, therefore

':‘:‘“ @G+ fTa e (x0) = =-F'p+ V2 +GreT 13)

Z o, @hHrei . oo, (14)

at P

r
- >

Operating on (13) with tha curl V' and defining T = V'xu ylalds

k14 ct 2 :

LV ok @)+ A B rer e () (1s)
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I
wvhere the relations (3x;)x: - (3-3)3 = ¥ %i and Vou = 0 are used to
obtain the first and second terms on the right-hand-side, respectively.
Stratification is achieved in this experiment by cooling the
bottom at the same rate as the top, so that the stabilizing and de-
stabilizing forces have the gsame magnitude and afford an optimum observa-

tion of penetrative convection. The surfaces are assumed to be "frictionless

Ju
1lids," i.e., non~deformable, stress-free surfaces where u = o, aL' =0
(n - normal, {|1 - tangential). Under these ccnditions the tangential

components of the vorticity also vanish and the condition on its normal

component follows from $-E £ 0. The kinematic boundary conditions may

therefore be summarized as

=f = -k 0 on all surfaces. (16)

The lateral walls are assumer. to be thermal insulators and the tempera-
ture gradient is fixed at the bottom and top surfaces. The thermal

boundary conditions become thus

g—}-o on x=0,1;y=0,1

T + 8 z=0

T on respectively. (17)
2 [-8 1

Finally, the latroduction of a vector potential ; = $X$ leads to a

simple relation between the velocity and vorticity couponents.ll Letting

218

REEREIROON. 3 T AT




T
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Fethao=¥ x () = vlvy) ~ v2§ (18)

and introducing the gauge 3-; £ 0 (there are no sources of motion other

than that associaced with vorticity) leads to the simple relations
51 - .v2¢1, u - (3):3)1, i=1,2,3 (19)

wvhich are very suitable for numericel solutions, either by relaxation
or fast Fourier-transform methods., The boundary conditions on #1 are
subtle and must be discussed carefully. Hirasaki and Hellums have
-hownlz that if no fluid enters or leaves the volume (i.e., u =0
sverywhere) the parallel components of -vi vanish at each point of ths
surface snd the normal component then is determined from the gauge
'5-; % o, Thus

i
Y, - T: =0 on all surfaces (20)

Finite-difference versions of (14), (15), and (19) have been programmed
for a digital computer; the differ~nce schemes employed and their

properties are discussed in Appendices A and B.

III. Choice of Psrameters and Initial Conditioms:

The valuss of the governing parameters for ths experiment were
mostly dstermined by the number of mesh points and corresponding reso-

lution that was available on the computsr used, a CDC 6600 with a
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64,000 word (60-bit) memory. To represent adequately the flow at
large Grashof and Taylor numbers and to ensure numerical stability
and accuracy, the mesh size must be chosen small enough to resolve
the thinnest boundary layers present in the system. In rhis case
they are associated with heat conduction and the interaction of rota-
tion with viscous diffusion, the so-called Ekman layer.l3 A simple
scale analysis of (13) and (14) shows the relevant boundary layer

thicknesses to be given by

6 = Gr. % (21(2))

§, = Ta-h

E (21(b))

vhere 8 is the prescribed surface temperature gradient; 8, Ta and Gr
are defined in (12),

The maximum mesh size that could be fitted into the computer was
20x20x10, with the horizontal dimensions accentuated to simulate the
natural phenomena, Since both the Ekman layers and thermal boundary
layers lie along the horizontal surfaces, the mesh spacing 4z in the
vertical direction is chosen to be half the horizontal mesh spacing
Ax = Ay. To have the non-dimensional height unity a choice of 4z = ,1
must be taken, with Ax = Ay = ,2, The total geometric height-to-width
ratio therefore becomes D/L = 1/4, If the criterion of Az ¢ GT'EE is
taken to ensure proper resolution and stability of the system, the
correspoading values of Gr. f and Ta should be <104, Actually, the
e-folding distance of boundary layer decay is larger than the expressions
g'ven in (21) by factors of n and /2, reapectively,14 so that the resolu-

tion is much better than the above criterion implies.
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Initially the fluid is taken to be homogeneous and the cooling is
turned on at t = 0, No attempt is made in the experiments to determine
the minimum time in which the resulting nonlinear temperature profile
would yield convective instabilities due to a given finite-amplitude
perturbation. Several authors have studied this problem in certain

15,16 17,18

laboratory experiments and also theoretically. By choosing

the amplitude range of the horizontal temperature perturbations from
10-4 to 10"3 times the temperature difference between the cooled top
and the (yet) unaffected interior, finite-amplitude convection results
in each case with a rapid, monotonic increase of the kinetic energy.
The form of the initial perturbations is that of white noise, 1i.e.

N M
T'(x,y,2) = A e"(l)-z)/ll . ;154- . ): cos (nwx ] cos (ury)

n=1 m=1

(22)

The scale height H is so chosen that most of the perturbation is con-
fined to the top region where the natural noise is likely to originate;
this also ensures that in most of the volume T'(z) is small compared to
T(z) - 'l‘o, To being the initial ambient temperature of the homogeneous
fluid. The number of Fourier modes N and M is li{mited by the considera-
tion that at least 2, but preferably 3 or 4, mesh points are nceded to

numerically resolve the smallest wave lengths.

IV. Results and Discussion

The results of the numerical experiments are presented in two
ways: by plotting the isolines of the vorticity components and tem-
perature at successive intervals of time, somewhat in a movie-like
fashion, and by plotting the total mean-square v. ‘ticities associated

with the circulations In each coordinete plane as a function of time.
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The particular case presented here has the parameter values
B=1, Pr =7, Gr = 4000 and Ta = 10000 assigned to it. Based on a
comparison with other rotating convection experiments, the effects of
rotation were expected to be only moderate and the results are
surprising.

An examination of Figure 1 reveals several interesting facts.
There 1is clearly equipartition between the three modes of circulatiom.
The x-rolls and y-rolls (i.e., convection rolls with axes parallel to
these directions) exchange energy for about 5 cycles, each of period
L .2 (in units of L2/v, momentum diffusion time) and the z-rolls
(actually a group of "cyclones" as seen in Fig. 5-8) grow monotonicly
at exactly the same rate as the mean of the x- and y-rolls, At t' ~ 1,2
some abrupt changes occur in the system. The x~ and y-rolls stop oscil-
lating and start to damp out; the cyclones undergo a sharp drop and
rise in intensity and then also settle down to viscous damping; the
nature of this strong dip is not understood and can not easily be related
to any visible changes in the flow. Lack of computer time prevented the
system from being followed to its final steady state, but experience with

two-dimensional flows shows that after the oscillations, representing

conversion between potential and kinetic energy of the system, damp
out the system settles down to a steady state quite readily. In
arriving at this steady state the time of thermal diffusion is
probably more important since it smoothes out the temperature con-
trasts that drive the system, beiween the downward plunging cold
blobs and the ambient fluid.

The behavior of the total energy is best understood from an

examination of the vertical cross-section of the isotherms as shcwn
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in Fig. 2. Initially the stable bottom layer is thin and the down~-
ward moving cold thermals can generate a lot of motion, As the
bcttom layer thickens, the region of instability shrinks; at the same
time, viscous damping is beginning to act on the x- and y-cells and
thermal diffusion begins to smooth the contrast between the thermals
and the ambient fluid. The net result is a sharp decrease in the in~-

tensity of the circulation; evidently all three smoothing agents are

T e AT ARl WA S i Tt A e LM, £ DB

making their effects felt at the same time,
However, this behavior of the isotherms is not markedly different
from the case of no rotation, The particular effects of rotation are

most noticeable on the display of the horizontal circulation at

various height levels. Figures 3 and 4 display the time developmen:.

at the top level (top rows) and at the middle level (bottom rows).

1.0
{5
: {30
1|
25 |
1 IA\\ .l!
/ |
/ |
|
/ v
5 /[ \/
40 .60 80 Lo vz Lh

Fig. 1. Total mean-square vorticity components {x, y and z)
as a function of time
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Fig. 2. Vertical (x-z) plots of the isotherms during oscillatory (top)
and near-steady mction (bottom)
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The most noticeabls overall festures of the circulation are the groups
of closed circulation cells, mootly numbering from 3 te O and normally
referred to as cyclunss in mutscrology or vortices in hydrodynauics,
and o meandering, four=lcbed sinusc’del jat strean, In sone frames

most of the linss belong to the cyclonse and in some most to the jet
stream, indicsting the relative strength of tha two phenvumena, In
the type of deroclinic irstability found in roteting annuli es
described in refarences 3«8, woat of tha streamliines balong to the
Jet strem, vhereus in this sxpiriment thsre is at nost squiparti-

19 have obasrved such

tion betwaen the two modes. Mason and Hide
wegk juts in e roteting annulus in which one of the cylinders was
insulating, one cooled at a fixed temperaturs and thas electrelvtic
fluid {n tha gep was heated internally with a current. If vne thinke
of the jet atrsun as e conveyor balt rolling on the cyclones, the
former cess ias ansloguous tc a heavy balt driving some light vhesls
and the present cass to a light belt driven by hsevy vhasla. Hence
the notion of "strong" and "weak" barvclinic instability.

A dateiled sxamination of Yiga. J and 4 ghows that jet strean
formation ia inmediete and strong at ths middle level but disappears
in the end to §:..d to a formation of § cyclones. At the top, on the
other hand, a jat stream is not apparent uatil the l'h frame ond ends
in a wveak jat bstween four atrong cyclones. The selsction of an ne2
nods 1s obvious when tha drastic constraint of a ractengular geometry
is considerod; in cylindrical annail wdas with 2 to 13 lobes hevs
been observed. The withdrawal of the downward plunging cold thermals
toward the aurface and their generel weaksning i{n ti{me is probadly re-
sponaible for the verticel varietion of these pattarns.

An examination »f Pigse, 3 and 6 reveels the reletion between

tomparatures and horisontal circulation, snd indirectly sheds some light
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Fig. 5. Horizontal plot of the isolines of the z-component
of vorticity (lefc column) and temperature (right column).
Top row represents surface level {z = 1.0) and bottom row
middle level (z = .50). Illustrates behavior during trans-
ient (oscillatory) motion and Fig. 6 near-steady behavior.
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; Fig. 6. Horizontal plot of the isolines of the z-component
E of vorticity (left column) and temperature (right column).

Top row represents surface level (z = 1.0) and tottom row
middle level (z = ., 50).
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on the origin of the strong cyclonss, The centsr of ths cyclones
coincides with the center of the ssmi~circular isothammic ragions,
verifying the "thermal wind" relationship, i.,e., ths horizoutal
temperature contrest driving a moticn that s constrained to rotate

by the Coriolis force., From (15) we obtain (uaing %oF = %:3 m 0)

Eea@Bi s Ehws a5 & (23)

and from continuity

M 53

-
3!* AR (24)
Since regions of downwerd Plunging cold fiuid corraspond to strong
regions of convergencs, they algo correspond to regions of strong
Cyclone generation through the last term in (23) which 1s proportional
to Q.
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Appandix Ar
The finite-diffarence form of equations (14)=(17) will be pre-
sented here, Vor a detailed discuseion of iterating in time the

initiel~value problem the reader is referred to works by xichtmycrzo'zl

and Lilly.zz and for a discussion of differencing the nonlinear si-
vective terms end the property of conservation to works by Arakawa.23
Roberte and "Oill.z‘ and Piacsek and Htllinn-.g

The time coordinate is discretised as t = nAt and the space
coordinatee as x = iix, y = jdy, s = kiz, with n,1i,j,k being integers,
and denote the velue of a dependent variable, say ¢, at the discrete
mesh pointe es ¢(x,y,s3t) = ¢(14x, jAy, kdz; nit) = o The follow-

13k°
i ing difference operators will simplify the expressions considerably:

1 n nvl n
- .0 n n+l
cx(’ijk) = (°1+1.jk =~ ‘1'1.jk)/zu (A.2(a))
+,.n n+l n
800410 = (Ogqn, gx = a1, g1 /20x (A.2(b))
]
£ n n n+l n +1
* - n
g 8X (‘111) . (°1+1,jk + ‘1-1.jk - 0““ = Oijk)ldxz (A.3(a))
; #on \ _ ontl n R TR 2 N
i n n n
. 60000 = Whay i = ¥1p, 0/ 20% )

e i i 1 Y
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with similar expressions for 6;, sy, 6y, 6;, etc. Other useful

operators will turn out to be

+ n - n - n -
ud uijk Gx + vijk Gy + v:l.jk 6: (A.5)
SS” = SX_ + SY + sz~ (A.6)

and similar expressions for utt and ss¥.

The differencing of the adveqtive terms follows the so-called
"angled~derivative" method, first discussed by Roberts and Weisszl‘ and
tested'exte:;sively by Piacsek and Williams, o Applied to a simple

system, say L . u 29 » this method takes the following expression

it . 9x
Upsweep (i=1,2,...,I) 5:“:) - - u: . 5;(¢‘1‘) (A.7(a))
Downeveep (11,1-1,...,0) S, () D = =ul « & 63 H w70

The overall truncation error of this ascheme over the complete time step

is
0(at? + ax? + (At/ax)?) (A.8)

and linearized stability analysis (see, e.g., Chapters 4 and 8 of Richtmyer
& M"01'“’“20) shows that its associated eigenvalues have amplitude unity
ard there is no limitat.on on the time step At. The scheme is therefore
neither amplifying nor lamping, a very desirable property from the point

of view of conservatic' . Furthermore, it may be noted that the newly
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. and 0:+2 may be stored in the locations for

generated values ¢:+
¢2 and ¢:+1, respectively, since there is no need for the latter
quantities in the sweep once the former values have been computed.
The storage of each physical variable at only one time level is
needed, therefore, as compared to two for the leap-frog method,21
and the total mesh size that can be employed with such a scheme is
therefore doubled.

The differencing of the diffusion terms follows a relatad scheme,

the so-called "Saul'ev" scheme (p. 191-192, ref. 20). For a simple

2
system such as %% - 2—% , this method takes the following form
X’

Upsweep (i=1,2,...,I) ét(¢'1‘) - sx'(¢'1‘) (A.9(a))
Downsweep (1=I,I-1,...,1) & (¢]) = sx+(¢'1‘+1) (A.9(b))

The overall truncation error of this scheme is also that given by

(A.8) and there is no limitation on the time step. Admittedly, the
error (At/Ax)? 1s poor unless At << Ax, but this is a price cne pays

for additional storage. The experiments showed that At = ,1 Az ylelded
quite satisfactory accuracy and the time step was stil) larger by a
factor of 6 than that allowed by the stability conditions associated
with three-dimensional explicit schemes (Az = .1 in the present problem).
Before the complete schemes for (14 ..nd (15) are written down the con-
ditions Veu = 3-? = 0 are used to write the right-hand~side of (15) into

the "advective" form, i.e.

e i S
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a8 these are more sultable for the applicationg of the snglededarivative
methed. The finite~difforencad equations become therefore (E,n,¢ baing

the components of the verticity vector E).

ai('ri‘w s {03 4+ ss‘}r;‘jk (As10(¢a))
4 (Te = (bt 4 ss"ip (A.10(b))
n + - n n n n¥l
(Avll(a))
n + - n n el
Sy = i dvesT) n?ik + Ty ™ /i'i-a.(vm) - or, (130
(A.ll(b))
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Penotrative Canvection in Roetating Field

In each relatien of (A.11) and (A.12) the operatars 2 e 3T
have U evaluated at time level n, This Jeads to & cancellatien of
erosi~derivatives of the type 3%%% in the Taylor expansion of o:fi.
ste., and leads to an error of (At/Ax)? rather than (At/Ax), The
oparators i-?' and ?-1* have i evaluated at time levels n and n+l,
raspectively, as thece are the cnly values available in eemputer
storage, The use of the advanced values of T in the buoyaney terme
laads to etability ragarding the internal gravity waves that arise in
the syatem, and the velecity cemponents are evaluated at level n in
the Ceriolis terma for lack of a better acheme, Astually, a very weak
inatability reqults from this cholce of time level but aver the length
of time iteration performed in these experiments, it did not seem te
cause any difficulty. A better seheme would be to take the Coriells
terms as i(d.(ugjé + “ij)}' for sxample, hut the valuee “2;& are aot
avallable in this explieit scheme and several itevative sweepa over

the whole syatem weuld be required to achisve this eenditien.
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Appendix B:

Here the solutions of equations (19) and (20),

vzwi ol P i=1,2,3

1
wll = ~3%-- 0 on ail six surfaces

will be discussed using discrete Fourier series, The expansion func-
tions chosen are pure sine series in those directions which have
Dirichlet conditions 51’*1 = 0 associated with them; the Poisson equa-
tions reduces then to a set of ordinary differential equations with
Neumann conditions in the remaining coordinate. Thus, e.g., E,wx are

expanded in discrete Fourier series25

N N
£ = z bn(x,y) + sin nnkaz, wx = z an(x,y) + sin nrwkAz
n=o0 n=o

(B.1)

and again

M M
bn(x,y) = z dmn(x) * gin mnjAy, an(x,y) ) z cmn(x) * gin mnjdy
m=0 m=0

(B.2)

where N = I+1, M = 3+1 and I,3 are the number of mesh intervals in the
respective directions. For, a detailed discussion of this method see the

appendix of Ref., 8. The resulting ordinary differential equations then

have the form
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Penetrative Convection in Rotating Field

d2<:l.n

o - (o? + 112)1r2cnm - -dlnn (B.3(a))
x

de

d;‘" =0 at x = 0,1 (B.3(b))

and may be solved in finite-difference form by the well-known “tridiagonal

algorithm” (see p. 200 of Ref. 20).
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Numerioal Exporiments on Spiral Structure

R. H. Miller
University of Chicago

Chicugo, Hinvis

In prefersnoe to a survey of various gomputations
in astronocmy, 1 shall concentrate on one caleulation
that has led, in the past eouple of years, to the
development of ecomputer models of spiral galasies. Twe
groups have been wourking in this area: that ef hoger
Hockney and Frank Nohl at NABA Langley, and the group
at the Institute for Space Studias in New York with
Kevin Prenderyast and William Quirk of Columbia Univer-
sity, with whom I have been assoclated. These caleulations
have a lot in common with some work in plasma physics
conputations-=indeed, Hovkney and Mohl besame interested
in this problem through a baokground in plasma physies.

Spiral struoture is a pussle of long standing in
astronomy. B8pirals ocnnet be a transitory evolutiondry
phase; the statistics of relative numbers of spirals
amony all galaxies (about 2/) spirals) are not cunsistent
with such a notion. The basic preblem {s how tc keep the
spirals from wrapping themselves up. They are known to
rotate (from spectrouscopic evidence), and do not rotate
rigidly. The typlcal field of differential rotatinns
has larger anguiar velocitivs (oven linear velocities)
in the inner portions than there are farther out. Any
pattern impressed on such a differentlally-rotating form
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would wrap up and become indistinguishanlie after a few
rotations. And the rotation times (around 1/4 billion
years for our Galaxy) would wash out any spiral patterns

in times far too short to be consistent with large fraction
of spiral galaxies actually observed.

The way out of this difficulty was given by B. Lindblad,
who started working on this problem around 1925. The
*wrapping-up" occurs if the spiral consists of identifiable
material - what, todav, we call a “"material arm." Lindblad
pictured the spiral as a pattern--a density wave.

C.L. Lin and his group have built this idea into a pleasing
theory that has caused ounite a bit of excitement among
astronomers.

Even with the help of these models, the problem of
spiral structure cannot be regarded as solved --many features
are not yet understood. Neither theory nor observation
can give an unambiguous answer to so simple a questica as
whether the spiral patterns lead or trail. The lifetime
and stability of the spiral patterns are open questions.
There are other difficulties as well, but they merely
reinforce the need for alternate approaches to the problem.

One of the nice things about working in astronomy is
that many of the obje s are incredibly beautiful. A spiral
galaxy is one of the most pleasing objects. In Figure 1, a
well-known spiral galaxy, M 51, is shown. 1Ignore the bright
knot at the end of one of the arms. The features that impress
you immediately in this photograph are (1) a general rather

good twofold symmetry that extends over the entire galaxy,
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Experiments in Spiral Structure

Fig. 1. A spiral galaxy seen face-on. This is known to
astronomers as M5' or NGC 5194.

in spite of many detailed irreqularities, (2) a reasonable

amount of contrast, or of brightness difference, between

the spiral arms and the inter-arm regions, (3) generally de-
Creasing brightness farther from the Center, with a fairly
bright center (the photograph does not show this nearly as
well as it should--nc photograph can), (4) disappearance of
the spiral pattern at the center, but the spiral continues
outward as far as yosu can distinguish the galaxy, (5) some

dark lan=2s on the inner edges of the spiral arms {trailing
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edges, if the arms trail), (6) it loeks like e flat
6bject seen face=-on in this photograph=-it is a little
difficult to imagine e three~dimensional structure that
would look scmething like this in any direction, (7) it
is clearly e self-grevitating system, (8) while there
may bée neighburs, their influence is small. The ex-
perts will see a lot more in this picture. The bright
spots outside the ¢alaxy image ars foreground stars.
Figure 1 was made with an ordinaxy (i.e., blue=-
saensitiva) photographie plaute. If a red-sensitive plata
is used behind e filter to remove most of the blue light,
the galaxy shows much less strudture. If the galaxy is
photogravhed through a filter that pasces Hy or H‘. then
a set of bright "knots" is seen elong the spiral armse=
principally near the dark lenes. The interpretetion of this
is that most uf the light in the spiral arms comes from
very bright, young, blue stars (0 and ¥ stars), and from
ionised hydrogen (HII) reglons surrounding such stars.
These stars, whioh may be as muoh as 1000 to 10000 timce
es bright as the sun, but only 10-30 times as massive,
do not live very long=--thay consume the available fuel
stores much too rapidly., The red background may come from
stars that are less massive, hence longer-lived. Most of

the mass 43 in the form of stars that produce the red light,
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most of the light comes from the blue stars.

Our own Galaxy has all these ingredients as well.
We see bright blue stars, many faint red stars, and
gas clouds. There are some bright red stars too, but
these are much less massive than the bright blue stars,
and are at an advanced stage of their aging process.
Usually, the brigut blue stars are near or inside gas

clouds, the gas very near the star often being ionized.

2%

The gas density is very irreqgular. The bright blue

stars must have been born recently--presumably out of

the concentrations of gas. Moving with typical veloci-

ties, they cannot depart from their parental gas cloud

PERTG S P ey -

very far during their lifetime. Of course, stars of ali
; masses will be formed from these gas clouds- -many more
low-mass stars than high-mass stars, but almost all the
light comes from the bright blue (massive) stars. It is,
of course, no accident that we think that extragalactic
nebulae are built of the same ingredients that we see in
the solar neighborhood of our own Galaxy--it is precisely
because we see them here that we think they must be the
principal constituents of other galaxies. We also see in

our own Galaxy dark regions, or "dust clouds," usually

é associated with gas clouds and bright blue stars, that we

think are similar to the dark lanes in these other galaxies.
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NGC 1300, in Figure 2, shows another common form of
spiral galaxy. This is known as a "barred spiral, " and
shows the same features as have been pointed out in M51,
although perhaps different in detail. The barred spirals
usually have the pair of dark lanes symmetrically disposed
near the ends of the bar. The bar tends to be redder than
the arms. M81, in Figure 3, is a particularly beautiful
object, showing again the same kinds of features. YHere
the spiral pattern is more tightly wound. M8l gives the
distinct impression of a flat object seen in some direc-

tion other than face-on. Finally, NGC 891, in Figure 4,

shows the extreme case of one of these objects seen edge-on.

Presumably, if you could see it from another direction,
NGC might look like M8l or M51 (without the satellite).
Notice the dark lane concentrated rather closely to the
median plane. All these pictures are shown in an attempt
to convince you that a reasonable model for these objects
is a self-gravitating mixture of various constituents, all
constrained to move in a plane.

There are other kinds of galaxies--principally the
very regular and beautiful ellipticals, which look like
(oblate) ellipsoidal mass distributions, and do not show
the dark lanes or gaseous regions--and the irregulars,
which show a little bit of everything, with much less

organization.
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Experiments in Spiral Structure

Fig. 2. A different kind of spiral galaxy~--a barred
spiral. This is NGC 1300, also seen face-on.
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Fig. 3. Another spiral galaxy (M 81 = NGC 3031).
gives the impression of a flat object seen from some
angle other than tace-on.
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Experiments in Spiral Structure

Fig. 4. A spiral galaxy seen edge-on (NGC 891). Presumably
M 51 or M 81 would look like this if viewed from the appro-
priate direction, and NGC 891 might look like one of them if
viewed from another direction.

e
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As plasma physicists, you will notice that nothing
has been said about magnetic fields. A few years ago,
most attempts to explain spiral structure centered on
magnetic fields. There is good evidence that magnetic
fields are one of the ingredients of our galaxy. The
main justification for omitting them from the present
discussion is that the influence of the magnetic fields
on the dynamics of the stars is through the gravitational

effect of the ionized gas—--which represents a small frac-

tion of the total mass. Failure to construct a convincing
spiral model without magnetic fields would force us to
d include them; but it is worth a try withocut magnetic fields
because a model without them will be much simpler.

The starting point for most current theories of spiral
structure is abstracted from the conditions just described.
Models are to be constructed of self-gravitating systems

restricted to a plane. In that plane, there is a pre-

|
1 dominantly axisymmetric mass distribution that generates
axisymmetric potential and force fields. The axisymmetric
} part consists of red stars and contains most of the mass.
% Superimposed on this background is a gaseous system—--also

self-gravitating, but obeying gas-dynamical equations

i rather than the particle equations of the stellar dynamical
system. The two subsystems interact to generate a self-

omnsistent whole. Both subsystems partake of the differential

veran

rotation. The gaseous subsystem contains a spiral pattern
which rotates (almost) rigidly with its own angular velo:city.

The material (both stars and gas) flows through the pattern.
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There is a slight potential minimum at the pattern (the total
potential field is no longer axisymmetric), where the gas
tends to concentrate. The gas concentration also induces a
slight concentration of stars in the neighborhood of the
spiral pattern, but that concentration is much weaker.
A shock may form as the gas flow enters the potential minimum
at the spiral pattern. New stars are thought to f?rm in re=
gions of high density--thus preferentially near the shock.
When old stars die, they return some gas to the medium, to
allow this process to continue. However, not all gas is
returned, so the process cannot go on forever. The angular
velocity of the pattern is lower than the angular velocity
of the gas and stars over most of the region in which the
pattern can be se@en. Lin's models are built by impressing
a spiral pattern on this kind of background, then solving
the self-consistency problem for the combination of gas and
stars in the (linearized) limit of small density variations
and of small pitch angles for the spiral patterns.

Computer models, on the other hand, may start from
nearly axisymmetric models and allow a process like star

formation to go on. The stars move under theusual stellar

dynanical equations, with the forces determined by self-
gravitation. The "gas" population follows a modifi«d
dynamics according to which turbulent energy is artificially
removed. So far, the "gas" has not obeyed gas-dynamical
equations, but only a crude approximation to them. A shock
could not form in these models. We are improving this

feature of the calculation. Hohl's models differ in impos-
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ing an axisymmetric potential in which the stars move so
only one population is -2eded. The computer models normally
handle about 105 particl. .~-they could be pushed to 106 or
107 on current machines if there were any clear-cut reason
for doing so. Even so, they fall far short of the 1011 in

a real galaxy. Thus the theoretical models (Lin, and others)
and the computer models are complementary approximations to
real stellar systems. The theoretical models ignore the
grainy structure of r=al stellar systems, while the com-
puter models are far too grainy.

Details of the calculations have been published, and
will not be discussed here. Our calculation has been adver-
tised to be reversible and to have an exact Liouville theorem
in the }L—space, all obtained at the cost of treating the
integrations somewhat crudely. Reversibility is as much a

matter of numerical accuracy and roundoff as it is of the

difference-scheme used. We have taken some pains in these

matters, but cannot give an honest appraisal as to how
important these features are.

The results of a calculation that yielded spiral
patierns are shown in a motion picture. A few frames from
the motion picture are reproduced here as Figures 5 and 6.
The "star" field shown in the upper right-hand corner of
Figure 5 changes very little as the calculation proceeds.
The remainder of Figures 5 and 6 show the "gas," at succes-
sive integration steps at a stage of the calculation in
which the spiral pattern had settled down fairly well. The
pattern rotates in about 30 integration steps, while Fig-
ures 5 and 6 show 11.
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¢ b 8¢ 3

3 Fig. 5. Frames from the motion picture of the computer spirala,

) The upper-right-hand frame shows the “stars,” which change little

i during the calculation; the rest show the “gas™ at various integra-
tion steps,
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Fig. 6.

Continuation of Fig. S.
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This calculation started from a circular disk that
was all "gas,” but had a rule for creating "stars" cut of
the "gas" that is thought to conform to what might go on
in a real galaxy. The precise rule must have profound
dynamical consequences--certainly altering the rule alters
our models - but this particular aspect of the calculation
should not be taken too literally. By the time shown in
Figures 5 and 6, about 85% of the mass was in the form of
"stars,” the remaining 15% still being "gas." Star forma-
tion had stopped long before the time of these figures.
However, once stars were formed, they remained stars for
the rest of the calculation--there was none of the re-
cycling of material that is expected in a real stellar

system.

The spiral density wave idea is shown in Figures 7
and 8. These figures represent the "gas" portion of the
system, with a few "particles" singled out and plotted
as large squares. The identity of certain "particles" is
retained from irame to frame. In figures 7 and 8, indi-
vidual ".articles" can be seen to approach the spiral
feature from behind (the rotation is clockwise), dwell at
the feature momentarily, then to pass on through it. We
have not been able to show this effect in a sequence of
still pictures nearly as dramatically as .ne motion picture
shows it, but the effect is there.

A word of warning. These sequences--and the motion
picture--should not be cousidered as depicting the /. ,ing

or evolution of a real galaxy. The initial conditions are
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Fig. 7. Details of the spiral patterns, showing individual
particles moving through the spiral features, The entire
system is shown in the top {rame, the lower frames are
enlargements out of that picture at intervals of 1/5 an inte-
gration step. Certain particles are plottedas large squares
in each of the {frames, to show the motion of those particles
relative to the pattern.

254




Experiments in Spirai Structure

Continuation of Fig. 7.
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certainly unrealistic, and the real system has a more com-~
plex interplay of various properties than we have been able
to include in the computer program. Thus the fact that one
or more of these frames might look like photographs of some
real galaxy does not mean that we have managed to reproduce
the evolutionary history of that particular galaxy, or even
that earlier and later stages of the calculation indicate
what that galaxy would look like at earlier or later stages
of its aging process. The value of the numerical experiments
lies in general indications of how difficult it is to bvild

spiral patterns that live for a while (these lived for about

3-4 pattern rotations), of the interplay between the
"star" and "gas" populations in the pattern, what
fraction of the mass of the system participates in the
pattern, and so on. It is particularly valuable to be
akle to "kick" the computer experiment to see if it
"bounces, "~-~something that we cannot do with the real
galaxy. The computer experiment is an experimental tool
with whizh we can try to find out what makes spiral
patterns. While the emphasis in this paper is on spiral
patterns, there are other experiments that both Hohl and
we have done with these systems. These include experi-
ments on gravitational stability and attempts to verify
various stability predictions.

So what have we learned from these computer experi-
ments? We have learned that spiral patterns can be constructed
of self-gravitating systems without need to invoke magnetic

forces. But two populations were needed, or some other

artifice to emphasize the spiral pattern. Real galaxies
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have a very effective amplifier of small density variations
to produce large brightness variations. Computer models
need the same thing. On detailed analysis, we find that
there is a spiral density wave in the stars as well as in
the gas-- there is about as much total mass participating
in the spiral phenomenon in the stars as there is in the

gas. But about 1/4 the gas participates and less than 5%

of the stars, so when we plot the star density we do not

see a spiral pattern. So far, there are no spiral patterns
in computer models without two populations (think of Hohl's
background potential as the second population), just as we
know of no spiral systems in the sky that do not have two
populations. But are two populations necessary? We do not
know. Spiral patterns seem to appear when the conditions

- re about right, but we find that spiral patterns are diffi-
cult to stir up if the conditions are not just right (this
is the content of Quirk's Ph.D. Thesis).

As with all experiments, the computer experimenter must
be very careful to avoid interpreting sitiations in which
the experimental results fail to contradict his prior preju-
dices as proof of the correctness of those prejudices. With
these experiments, we have seen some patterns. What we see
fails to contradict our prejudices. We feel that we have a
foot in the door, ard a valuable tool for experimeniing with
properties of spiral systems. The real test comes now--to see
if we know how to use that tool for some definitive experi-

ments.
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For those who may wish to pursue some of these matters
further, the following references are starting-points and
lead to earlier literature:

{1) Theoretical work on spiral waves, especially the
Lin school:
C. C. Lin, C. Yuan, and F. H. Shu,
Astrophys. Journ. 155, 721 (1969)
(2) Hohl's computer experiments:

F. Hohl, "Dynamical Evolution of Disk Galaxies",
NASA Technical Report NASA TR R-343, July 1970.

F. Hohl and R. Hockney, Journ. Computational Physics,
4, 306 (1969).
{(3) Our group:

R. H. killer, K. H. Prendergast, and W. J. Quirk,
Astrophys. Journ. 161, 903 (1970).

(4) General review of astronomical view of spirals
(conference proceedings)

The Spiral Structure of Our Galaxy, IAU Symposium 38

W. vecker and G. Contopoulos, Editors
(Dordrecht, Holland: D. Reidel Publishing Co.) 1970.
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Chemistry from Computers:
A New Instrument for the Experimentalist

Amold C. Wahl
Argonne National Laboratories
Argonne, [llinois
INTRODUCTION
Some time ago, being fresh from the enthusiasm of
computing Hartree-Fock (best molecular orbital) wave
functions for non-trivial molecules, I gave a talk1
entitled "Hartree-Fock is Here: What Next?" and I received,
from an experimentalist, a reprint request for the article
"Hartree-Fock is Here - Who Cares?" This mis-stating of the
title of my optimistic talk, in addition to being humorous,
contained a very substantial bit of truth; namely, computers
have brought us a great deal - vast numerical tables of
molecular properties, pretty pictures, decailed wave functions
from many small molecules (in many cases, so precise, they
are unusable), and perhaps more "theoretical chemists” thau
ever before. But how much chemistry have they really given
to us? This question certainly needs to be answered, and if
we are to make chemi!sts happy we must agree to answer it on
their terms. Thus, we need a precision in potential energy

surfaces of about 1/10 of an eV, we need better than 5%

precision in ionization potentials, binding energies, vibrational
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frequencies, term values, and spectroscopic constants. We,
further, must go beyond isolated calculations, and into
their comprehensive coupling with the traditional tools of
the chemist to allow us to obtain macroscopic properties.

In this paper I would like to explore how close we, at
Argonne, are to achieving such results from computers. It will
become apparent that we must be cautious, but that in certain
cases we are able to obtain truly reliable chemical information
from our a priori computing systems and that our research is
most properly viewed as the development of a new instrument for
the chemist by which he can obtain detailed answers often not
accessible experimentally. An intriguing and very important
aspect of this new apparatus is that it permits us to "look" in
unprecedented detail with arbitrary magnification or time scale
(when quantum mechanically lega2l) at a chemical process under
study, be it molecular electronic excitation, vibration,
collision, or the entire path of a chemical reaction (See note

on page 302 and Figures following).

THE MOLECULAR ORBITAL MODEL

As a first step in tracing the development of our new abdb
initio instrument for exploring molecular structures, let us
look at a very popular model of electronic structure; namely,
the Hartree-Fock molecular orbital model.2 This model
currently is being applied widely in the name of chemistry
to all kinds of systems. However, some typical results
obtained by the Hartree-Fock model show that although it is
adequate for some molecular properties, the Hartree-Fock

model has very well-known and well-substantiated deficiencies
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which make it difficult to really do a priori chemistry from
Hartree-Fock calculations.

First of all, let us briefly review what the Hartree-Fock

e is. The Hartree-Fack model is the best orbital model.

In the Hartree-Fock model20 we place electrons in individual

model

three-dimensional functions ¢ include spin functions, and then

1!

form a properly antisymmetrized product of these spin orbitals.
¥ = @wioi (1)

to obtain the total atomic or molecular wave function.
Mathematically, the orbitals 1 are solutions of integro-

differential equations of the form

wvhere F is an operator depending upon all electrons and nucleil
of the systems and arising from the variations of its total
electronic energy. These equations must be solved 1terative1y28
since the orbitals oi determine the operator F and vice-versa.
Convergence on the "best" set of orbitals is achieved when the

Ois from two successive iterations agree within some permigsible
numerical threshold. In Figures 1 through 3 some typical

pictures of best molecular orbital and total electron densities

for a variety of diatomic molecules are shown. From these

pictures it immediately becomes apparent that the Hartree-Fock
model forms a very appealing, conceptual and, in fact, symboiically

beautiful framevork for thinking about molecules.ao’31
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Fig. 1a, Orbital model of homonuclear diatomic molecules,
ANL-7076 by A, C. Wahl (1965), also Science 151, 961
(1966), and for a discussion of alkali halide densities sce
A.C. Wahl, F. Janiszewski, and M, T. Wahl (to besubmitted
to Science). All diagrams are produced automatically by
digital computers linked to a cathode ray tube, Conventions
given in key to this figure.
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CATION (Na*) ANION (CT)
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Fig. 2b

El=ctronic probability “clouds” for Fg and NaFg, These also
may be mapped as contour diagrams, See Figs. 1a and 2a,

Fig. 1c
Total electron probability clouds for some
homonuclear diatomic molecules which can
be mapped by contour lines as in Fig. la,

g
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The homopolar cases (Figure 1) have symmetry and covalency;
in the ionic systems (Figure 2) the molecular orbitals are
really localized on the individual ions and are very much like
the isolated ionic orbitals. In looking at "pictures” of mole-

cular processes -- namely, ionization32’33 84},198

and excitation
(Figure 3) -- it appears that in the nrbital framework we get a
qualitative feeling for what's happening. An orbital shrinks
vhen we remove an electron, it gets a little smaller, a little
tighter, because there is less electron repulsion. Further, the
non-active orbitals are relatively insensitive to the ionization
process (Figure 3a). In Figure 3b we "see" quite dramatically
aoc to® excitation33 in the hydrogen molecule followed by
ionization.

Now let's turn to some typical quantitative results
obtained from the model. In Tables 1 and 2 recent results
of Hartree-Fock calculations on diatomic s:ystems:“-63 are
shown., We are first struck by the rather good geometry pre-
dictions -- we can predict internuclear distances, often
within less than 1X. Also, a typical one-electron property
such as the dipole moment is well predicted. But, looking
further at the tables, we find, from a chemist's viewpoint,
binding energies are terrible. We can, of course, correct
them semi-empirically, but this, after all, cannot be called
a priori chemistry from computers. We see that the dissocia-
tion energies are often off by 100%; take Fz, as an outstanding
example of this deficiency. Also, vibrational frequencies
really don't allow us to distinguish between excited states of
the same molecule; the precision 18 not sufficient. We find,

for instance, in the excited states of the nitrogen molecule
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MOLECULAR ORBITAL DENSITIES#
THE ALKALI HALIDES

CATION PARENTAGE
Total Is 2s 2pm 2pc 3s 3pm 3po

: 20

*These molecular orbitals are arrangad according to their separated ion parentage
...first the set arising from the cation and then the set from the anion. The
molecular orbital label is given above each diagram.

o
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ANION PARENTAGE
pm 2p0' 3s 3pw 3po

2s 2

3c

267

Fig. 2a. Orbital model of some alkali halides.
Conventions are explained in ANL-7076 by A, C.
Wahl (1965); also Science 151, 961 (1966), and for
a discussion of alkali halide densities see A, C.
Wahl, F. Janiszewski, and M. T, Wahl (to be sub-
mitted to Science); Atoms to Molecules (Film
series) by A. C. Wahl and U. Blukis, McGraw-Hill
Book Co., New York (1969) and J. Chem. Educ. 45,
"87 (1968); and Four wall charts of atomic and mo-
lecular swructure by A.C. Wahl and M. T. Wahl,
McGraw -Hill Book Co., New York.
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IONIZATION
202

t

Nz('fﬁ)

Ns(z‘ﬂ'u)

N;(zzg)

N3(2Zy)

Fig. 3a. In the orbital picture of molecular ronization for the nittegen nwlecule orly valence orhitals have been
plotted, Note that it 13 primanly the orhital from which an electron has been renoved which changes, For con-
venuons sec ANL-7076 by A, C. Wahl (1965), also Seience l_)l W61 (1966), and for a discussion of alkalh halide
densities see A. C. Wahl, F, Janiszewsk, and M. T. Wahl (10 be subuntted to Scicnee),  For wavefuncuons see
P.E. Cade, K, S, Sales, and A, C. Wah), J. Chem, Phys, 44, 1973 (1166),
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ENERGY (Hartrees)

=—EXCITATION

= 1 |
'35 ) 20 30 20

R(Bonrs)

Fig. 3b. The diagrams reptesent the two fundamental processes in chemistry: excitation and
ionization, The diagram reprcsenting the excited and ioniced states are contour plots of the
total electron densities of the three systems; Ho in 1ts ground state; Ho in an excited pi state;
and H; in {ts ground state. In all three diagrams thc outermost contour has a value of 6.1 x
1075 electrons/bole? and each successive inner contour increases in value by & factorof 2.
Note the disappearance of the inner contour value of .25 1 Hyp after it has undergone cxcitation
or 10nization. These diagtams were drawn antematically by clectronic compiters and are bascd
on accurate ab initio calculations of the wavefunctions for the Hg system. [A Doublc Confiy -
uration Self-consistent Field Study of the 1), Iny, Ln,, and 3ny States of Hy by W. Zemke,
P. Lykos, and A.C. Wahl (to be submitted to J. Chem, ghys.. and Ph.D. Thesis by W, Zemke,
LLT.): and BISON: A New Instrument for the Experitnentalist by A, C. Walil, P, J. Bertoncni,
K. Kaiser, and R, H. Land, Int. J. Quantuin Chein,, Sanibel symp, Issue (1969))
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i.onl'2 (Figure 7) that there is an inversion of molecular energy

levels, that does not allow us to interpret spectroscopy. Now,
the reasons for these defects are well known. The orbital
picture has an inherent error built into it, the correlation
error. The orbital picture does not allow electrons to get out
of each other’s way explicitly and instantaneously. It happens
that this error for the atoms is not the same as the error for
the molecule built from these atoms. Therefore, binding
energies are not good, and further, the error differs for-
different states of the same system. Thus, term values are

not accurate.

Secondly, a simple molecular orbital picture, although
relatively good at the equilibrium configuration of most
molecules, deteriorates rapidly as you try to pull the molecule
apart. Thus, the shape of the potential curve is distorted by
the constrained form of the molecular orbital picture. These
two defects of the Hartree-Fock model account for its most
serious shortcowings; namely, improperly shaped energy surfaces.
bad binding energies, and badly computed term values for
transitions between electronic states.

There arc notable cases where the Hartree-Fock model does
provide some chemistry, but certainly not a "chemist's"
chemistry. For instance, in Figures 4, 5 and 6 the potential
curves obtained from Hartree-Fock calculations47 on the rare
gases He, Ne, Ar are plotted. Here, we are obtaining from our
calculations a precision just about as high as currently is

available from expuriment. This is due to the fact that the
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Potentiol energy U (R) (V)

OO0l & o s Ltap e b be g ol oaa g

1 F3 3 4
Internucleor distance A (Bohvs)

Fig. 4. He-He potentiai curves. AJC--semiempiricai curve from
scattering data; I. Amdur, J. D. Jordan, and S. O. Coigate, J. Chem,
Phys. 34, 1525 (1961). AB--semiempiricai curve from scattering data;
I. Amdur and R. P. Bertrand, J. Chem, Phys. 36, 107B (1962). BD--
semiempiricai curve from composite data: R. \. Buckingharm and
D. M, Duparc, Progress in Intemationai Rescarch on Thermodynamic

and Transport Properties (Symposium on Thermophysicai Properties,
Princeton University, 1962; American Society of Mechanicai Engi-
neers, Academic Press, New York, 1962), p. 378, TFD--Thomas-
Fermi-Dirac method: A, A, Abrahamson, Phys. Rev. 130, 693 (1963).
AB--semiempiricai curve from scattering data; I. Amdur, J. E. Jordan,
and R, R, Berrand, Atomic Coiiision Proceses(Ed. M. R, C. McDoweil,
Proceedings of the Third Intemationai Conference on the Physics of
Eiectronic znd Atomic Coilisions, London, 1963; North-Hoiiand,
Amuaterdam, 1964), p. 934, KL--semiempirica! curve froin scattering
data; A, B. Kamnev and V. B. Leonas, Soviet Physics--Dokiady 10,
529 (1965). LCAO--iinear-ccmbination-of-atomic-orbitals method;
T. L. Gilbert and A, C. Wahl, J. Chem, Phys. 47, 3425(1967). OSCF--
optimized seif -consistent-fieid (Hartree -Fock) method; lo;c_ tﬂ
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Fig. 5. Ne-Ne Potendai curves. MR--semiempiricai curve
from scattering data; E. A, Mason and W, R. Rice, J. Chem,
Phys. 22, 840 (1954), AM--semiempirical curve from scatter-
ing data; I, Amdur and E, A, Mason, ]J. Chem, Phys. 23, 415
(1955). TFD--Thomas-Fermi-Dirac method. A. A. Abrahamson,
Phys. Rev. 130, 693 (1963). KL--semiempirical curve from
scattering <ata; A, B, Kamnev and V, B, Leonas, Soviet Phrs. -~
Doklady 10, 529 (1965). LCAO--lineaz-combination-of-atomic-
orbital method; T. L, Gilbert and A. C. Wahi, J. Chem, Phys. 47,
3425 (1987). AASCF--augmentzd asymptotic self-consistent-
fieid medhod; loc, cit,
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Fig, 6. Ar-Ar potential cutves, LCAO--linear-combination-
of-atomic -otbitals miethod. T, L. Gilber: and A. C. Wahl,
J. Chem. Phys. 47, 3425 (1967). AASCF--augmented asymp-
totic self-consistent-field method. loc. cit. TFD--Thomas-
Fermi-Dirac method; A. A. Abrahamson, Phys. Reyv. 130, 693
(1963), BF--semiempirical curve from compositc data; J. A.
Barker and A, Pomipe, to be |.bliched, AJP--semiempirical
curve fron scattering data; L Amdur, ], E, Jordan, and R. R,
Bertrand, Atomic Collition Processes (Ed, M. R. C. McDowell,
Proceedings of the Tiird Intemnational Confereuce on the
Physics of Electronic and Atomic Collisions, Loudon, 1963.
North-Holland, Amnsterdam, 1964), p. Y34, AJy and Alp--
seiniempirical cutves from scattering data: 1. Amdur and
J. E. Jordan, quoted in D, D, Konowalow and S. Carra,
“Morse Potential Functions for Nonpolar Gases,” Repuit
WIS-TC1-74 from the Theoretical Chemistry Instiruie of The
Unlversity of Wisconsin, Dec. 1964, KL--semiempirical
cutve from scattering data; A, 39, Kamnev and V, B, Leonas,
Soviet Phys,~~Doklady 10. £29 (1965). AM--semiempirical
curve from scattering data, 1. Amdur and E. A. Mason,
J. Chem, Phys. 22, 670 (1954).
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correlation error fo~ these closed-shell systems remains rela-
tively constant as the atoms are forced together. There are no
new electron pairs formed and, thus, no new strorg electron

correlations associated with molecular formation.

BEYOND THE MOLECULAR ORBITAL MopgL®3~136

The iHlartree-Fock miydel 1is good for predicting geometry and
many one-electron properties (this is also true for similar
calculations on polyatomic systems). The Hartree-Fuck model
also ylelds adequate results for a variety of molecular systems;
namely, those arising from closed-shell interactions, for
instance the noble gases.b7 Systems in which there is only a

48,49 64

one-electron bond are typified by He,+, Li-He, NaHe,

2
NeH+, HeH+56 (some rather bizarre systems from the chemist's
viewpoint), and highly 1ionic systems for which the shape of

the potential curve is rather good are typified by the alka {1

halldesso‘52

which are, in fact, analogous to the rare gas
systems held together by a coulomb force.

How can we improve this model without losing its valuable
features? { would like to describe what we have been doing to go
beyon. the Hartree-Fock model with the goal in mind of obtaining
results on diatomic and, eventually, larger systems. A con-
dition is that these results be of genuine (uantitative use to
the experimental chemist and serve to complement his efforts,
particularly where the experiment is difficuit to perforw. Such
situations might involve high temperatures, highly corrosive
macerials or very short-lived transients. The essence of our

6,103-106

scheme, which 1 am now going to describe, involves
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Fig. 7. Atthe left are shown theoretical potentials for the nitrogen molecule and Its lons: at the right,
experimental curves. Note the Inversion of the 2:; and 2n, state--a defecs of the orbical picture, See
P. E. Cade, K. S. Sales, and A, C. Wahl, ]. Chem. Phys, 44, 1973 (1966). Sce Fig, 3a for the changes
taking place ip the orbital picture of these lonizations.
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2 direct pursuit of the two major defects of the Hartree-
Fock model. (1) The molecule is allowed to dissociate
properly (in many cases, this is a tiivial extension »f the
Hartree-Fock picture), and (2) the ccrrelation error in the
molecule is made the same as the correlation error in the
atoms, The latter is more difficult to achieve - especially
in the general case. However, for systems in which the
chemical bond is isolated by being one quantum number higher
than the rest of the molecular core, the correlation energy
changes associated with molecular formation are isolated by
being placed in this bonding region and we can do a rather good
job of making the correlation error constant, as a function
of inter~-nuclear disrance.

We see some typical results for the systems RZ' Liz, and
NaF in Figures 8, 9, and 10. We see in Figures 8b and 9b the
orbitals necessary, in addition to the Hartree-Fock model, for
the bonding electrons to avoid each other as the molecule forms,
and to give us a correct continuous picture of chemical bonding
(Figures 8c and 9c). These correlation terms may be conven-
iently categorized as in-out, left-right, and angular. Y%hen
added or subtracted to the ground state molecular orbital they
move the electrons away from each other in an in-out, left-right,
or angular sense. For systems such as H, in which there is a

2
single bond - no other electrons, and Liz in which the bond is
quantum level two and the core in quantum level one, the
quantitative results are truly gratifying and, in fact, are of
sufficient quality to be useful to the experimentalist. Fer

FZ' we have ohtained significantly better results than those

obtainable from the Hartree-Fock nodel, but still have not
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Fig. da

Comparisun of Harwee -Fock, HF; optimal double
configuration, ODC: and optimal valence config-
utation, OVC; potential curves with expenmental
coe for Hy, (G. Das and A.C. Wahl, J. Chem,
Phys. 44, 87 (1966).]

E (hortrees)

CORRELATION

HYDROGEN MOLECULE FORMATION CONTGURS
FOR EHF WAVE FUNCTIONS

| ol -

0
P
P o @ e QDD
L]
] i
z
[ oo - O
| !
v
c i
3 mr 0593 000! %
c
E
;o @ o
N l
F i
T -
A ' ‘
1
8 oo 9920 ’ nrs ”
S S i 4 - A 'y 4 i i
[+] [ ) 3 3 4 - [ ] 0 ]
INTERNUCLEAR DISTANCE
(BOHRS)

Fig. 8b, The omitals making up the Hy OVC wavefunction at Re and near dimociauon.

In Figs. 8b, 8¢, 9b, Sc, the outermost contour in all cases cotresponds to a density of 6.1 x 1075 e~/bote®. Each succes-
sive innet coutour then incremses by a factor of 2.
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Fig. 8c. Total chan~-density contum of the Hy OVC wavefunction as the molecule forms. [G. Das and A.C. Wahl,
J. Cham. Phys. 44, 87 (1966) and 10id., 47, 2934 (1967).] The horizontal line is the level of the Hy experimental eneegy.

- Fig. %a
<omparison of Hartree-Fock and optimal valence

configuration potential curves with experimental
one for Lig. [G.Das and A, C. Wshl, J, Chem,

Phys. 44, 87 (1966)))
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LITHIUM MOLECULE FORMATION CONTOURS
FOR EHF WAVE FUNCTIONS

MIXING MIXING
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Fig. 9b. The orbitals making up the Lig OVC wavefunction at Re. [G. Das
and A. C. Wahl, ], Chem. Phys. 44, 87 (1966) and ibid., 47, 2934(1037).]
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Fig. c. Total charge demsity contoun of the Lis OVC wavefunction as the molecule forms. The horizontal

line is the level of the Lip experiments] binding emergy. [G. Das and A, C. Wahl, J. Chem. Phys. 44, 87
(1906) and ibid., 47, 2934 (1967 ]

COMPUTED POTEFTIAL CURVES FOR Naf
M T - T T "

EnERGY HARTREES

76 40 100 40 W0 200
E INTERNUCLEAR DISTANCE (BOHAS)

E Fig. 10. Comparisoa of Hartee-Fock and optimised
valence configwation potential curves for NaF,
fA. C. Wahl, P, J, Betonctn,, G, Das, and T. L.
Gilbert, Intem, ), Quantum Chem., Synp. No. 1,
123 (1967).)
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done well enough to really aid the experimentalist (Table 3

and Figure 11). The reaeon for this is that F2 conventionally
ie cuneidered to be a single-bonded molecule. However, the two
electrone forming the bond are in the same radial quantum shell
and, thue, occupy the same physical space as twelve other
electrone. Therefore, there are subtle intershell correlation
effecte, which must be taken into account.

Let me now review the essential ideas of the Optimized Valence
Configuration (OVC) method, and then describe its recent applica-
tion to an experimentally uncharacterized system.

Configurations were added to the Hartree-Fock picture to
allow proper diseociation of the molecule. (In Hz this 1is merely
one extra configuration which subtracts the lonic terms as the
atome eeparate. Inclusion of such a configuration allows us to
"look" continuously at molecular formation. We could not do
this with the simple model of the mol:cular orbitals.) Addi-
tional configurations allowed the bonding electrons to avoid each
other ae the molecule formed; since they were of course,
avoiding each other completely when the constituent atoms were
at infinite distance. Included were angular and in-out terms
in addition to the left-right term which brought about proper
diesociation.

The optimized valence configuration wave function thus has
the form

vom At hAYy
where the *k are antisymmetrized products of orbitals °i similar

to equation (1). However, the 01 are now in the general solution
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Table 3

®, (car?) R, (Behn) D, (V)
H,
e 4561 1.9 .64
onc* 9214 1.2 4.13
[ 4398 1.90 463
Experimental 4400 1.4 4.7%
Liy
[ o 326 3.2 0.1?
ose® 344 S.43 0.46
owe? M5 509 098
ow® 345 5.09 0.9
Experimental 35 3.68 1.05
NaLi
et 264 5.5 (1 )
ove* 256 S48 (T )
Experimental - - —
L)
wet 1287 2.30 -1.97
ong® [ 1] 2.24 0.54
ove (3e, ouly)? 704 2n [V 1]
ove (All promotions into 3s,)¢ N.C. 2.2 0.95
Experimental " 208 188
NaPF
mwt 370 3.6 .08
ov? 570 S5 L0
Rxperimental’ 336 .54 4.9¢
SSes | 23], 'See v,
sSee [209]. o %ee [137].16)
*Ses u]. L™ n]. (6)
8o [9e ‘20 [22]). (6)
“see [13].
-198.7 v r . r
COMPUTED POTENTIAL
CURVES FOR THE
FLUORINE MOLECULE
HF
3
3
&
$ -1%0 E
= HARTREE FOCK LIMIT
E 2 F ATOMS - ®
:
S VC (309 ONLY DISTURBED)
OVC (Ja,) FILLED FROM # 22
LEVEL)
fewr
-188.9 -

' ' A 4
20 30 40 80 6O
INTERNUCLEAR U.STANCE (BOMRS)

Fig. 11. Comparison of Hartree-Fock ODC and OVC
potentlal curves for F. [G. Das and A. C. Wahl,
1. Chem, Phys, 44, 87 (1965)]
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of individual integro differential equations of the formloa’ 104,
105,106-121

Fog = e,y

where the F1 are more complicated operators depending upon all

orbitals of the system and all mixing coefficients A Con-

K
vergence to be~t orbitals is achieved in this model when the
energy of the system is stationary with respect to variation of
both the coefficients Ak 2nd the orbitals ¢1. We have seen some
of these necessary additional orbitals in Figures 8c and 9c.
Thus, we evaluate only the increase in correlation energy
agssociated with molecular formation, and we, in addition,
allow :he core to distort and p>larize, but we do not try to
correlate the core. We assume that the correlation error in
the core is constant. This assumption is supported by calcula-
tions on the rare gas systems, (Figures 4-€) and also by our
calculations on Li2 (Table 3). We now feel that we understand
this model very well and, as we have stated earlier, for the
type of bond which is isolated we can do a very good job in
obtaining the proper molecular energy surface. For an ionic
bond, the ionic system was handled quite well with the Hartree-Fock
approximation and we needed only one additional configuration to
allow for proper dissociartion. BRecause of intershell effects, we
still are not able to calculate bindin, energy. However, tech-
niques now being developed are expected to provide the necessary
improvement. (See NaF results in Table 3 and Figure 10.)

For Fz, we see that our results are not yet satisfactory;

(Teble 3, Figure 11) again, because of .utershell effects. The

correlations between po and pn electrons and between 8 and p
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electrons are not taken into account in our mathod (at this
wvriting).

However, bolstared by our confidence that we can do vary
wall on the alkaii-type systams, wa dacidad to try to do a
pradictiva calculation concerning a systam of which littla 1is
known expariuwentally. Applying our mathod, wa obteinad the

runultalsa

for Na-li presanted in Tabla 3 end Figuras 12 and
13. A binding anargy of about .85 eV (quita substantial) and

tha calculatad v'brational frequancy, etc. are predictad. Wa

faal we can attach a pracision to thase results of a few parcent
and va are hoping that thesa rasults will be usad by the axperi-

mantalist in tha near future to guide him in further charactarizing

this system.

A NEW "INSTRUMENT" FOR CHEMISTS

Tha naxt quastion is, sinca we ncv hava soma ab initio results

on tha enargy surface of tha simpla but exparimentally uncharacterized

system, Nali, what can ba done with such rasults to anhanca thair
chamical utility? As one exampla of such an application we can

turn to tharmodynamics. Wa know thet we could dascribe a vapor

mixtura of Na snd Li thermodynamically if we could obtain its

a
aquation of ltutula'.

Wa must therefore evalueta the virial coafficients. In tha
casa of NalLi we ara fortunate bacause, as indicatad by calculated

equilibrium constants for a Nali mixtura (Tablas 4 and 5), at the

tamparstures and prassura of interest, we may assuma that the

system consists overvhelmingly of isolated atoms. Therefore, ve

may calculata only the second virial coafficiant, assuming the
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Nel's) + LI(*8)

L s
sss
2en
LI

LI

-3.221099 HMT&'.;

Nel®8) + Li("Py,q)

~169.200132 HARTREES |
-189.30 Ne(®8) + LiI(%3) .
~180.3! |- B A

1 1 1 ] [ I 1 1 L ] ] ]
40 850 80 70 80 90 100 1.0 120 130 140 180
R (BOHRS)

Fig. 12a. Calculatsd potential curves for Nali, [A Theoretcal Study of the Nal System by
P. Bertoncini, G. Das, and A. C, Wahl, ANL-7447 (1969); also submitted to J, Chem, Phys.}

FORMATION
i a
) ) @
i _/ \_/
2 (o) .o 880 180
Mighast Comtoue Value w | Fleswon/Bote
Comow Usdle = 0.5
Fig. 13b, OVC 1T and Hartree-Fock total charge density contours fot the 12+ state of Nali at
15 bohes, 5.5 bohrs, 5.0 bohes, Picture at 15 bohm is 2/3 the scale of other 2 pictures, (Dbid.)
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CHEMICAL BOND

5.80

R (Bohms) 5.00
Largest Contour Value Plotted = 0.1 Electron/Bohr?

o @

R (Bohrs) 5.00 8.50
Largest Contour Value Plotted = 0.1 Electron/Bohr3

Contout Ratio = 0.5

Fig. 13. Contoun of charge density difference asociated with the formation of the chemical
bond in the 1T stae of Nali. Upper diagram shows the region where charge has increased
relative w dissociated atoms, Lower diagram shows where charge density has decreased
relative to dissociated atoms, [A Theotetical Study of the Nal System dy P. Bertoncini,
G. Das, and A, C. Wahl, ANL-7447 (1969); also submitted to J. Chem. Phys)
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Tabled
el L T
r, A s.0m 2.6m Net Avail,
(in Preg.) (2.691) (2.939)
@, (em™?) 199.2 351.4 Net Avail,
(Ia Preg.) (345.3) (209.9)
Dy (oV) 0.715 1.03 Net Avall,
(in Preg.) (0.99) 9.09)
Upper sumber la experimental ene.
1
b
Table §
T (%) ‘.&. ‘.lhu "u.
123 5.8801¢ 1.27468 0.3504
100 2.1397% 0.410¢ 0.0830
43 1.65798 0.308; 0.0865
[ 1%} 5.63966:10! 0.0979 0.013¢
m 1.46223-10-! 8.8202 0.9019
(34} 2.56338-10°! 0.0029 0.0002
3
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concentrations to be the initial concentrations of the atoms.
The second virial coefficient B(T) in the virial equation cf

state may be obtained for a Na-Li mixture frum the relation

2
(T)XLi + B (T)X

LixNu

2
B(T) BNaz(T)xNa W B Nali

Li2

where Xl represents the mole fraction of component 1.

In order to calculate the three BAB (T) we of course

needed the AB interaction potential VAB for both the 1! ground

state and 32‘excited repulsive Jtate arising from the three
types of collision of atoms in their ground state: Nali, Li-Li,
Na-Na. It is liere that the ab initio calculation plays an
important role. The 12 potentials are available experimentally
for Li, or Na, and we used our calculated one for Nali. A

2 2

variety of ways for evaluating V (R) for the 3! etate are ueed

AB
consisting mostly of semiempirical forms or "ecaled" or "reduced"
potentials; namely, Rydberg, Morse, Anti-Morse, power lerice.lao
We have used our ab initio potentials (in which we have con-

siderable confidence) and compared them with various popular

semiempirical forms.

4
il A GEEES GENED eE W
Vas
b 4
Ran
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Through the relation:

B - 38l 353

a

and

5 - g
- V-\R } 2
B AB 27Na j; {1 = exp[ e ] R dR

we can obtain from these potentials the three required virial

coefficients.

Now, what have we done with all of these results? We have
predicted the existence of and computed molecular properties
for NalLi that were not available experimentally; we have gone
further and used our potential curves to calculate the second
virial coefficients and, thus, the degree of ideality of alkali
vapors (alkali systems are difficult systems to look at experi-
mentally and, in fact, Na-Li, as noted previously, has uot been
observed), and are now calculating some transport properties for

the vapor wix: 141 We also have been able to crivicize th

a

assumed form of the 3! potential curves custcmarily used and are
suggesting a better form based on our calculations,

This study of the alkali vapor presents a good exampie
of how ab initio results can be dovetailed into traditional
chemistry.

By the further development of the techniques outlined
above to handle cross shell correlations and other types of
molecules, we feel that comparable energy surfaces can be
obtained for other diatomic molecules. In fact, this is cnrrently
our main mission in addition to extending these methods to open-
shell excited state systems so that we may obtain accurate
theoretical term values.
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It should be emphasized that there is no reason to believe
that what we have learned in diatomic syscems wil! be any simpler
in polyatomic systems. In fact, it is important to develo
diatomic theory and diatomic calculations to a point where they
are of use to the experimentalist beiore jumping into complicated
polyatomic systems using old methods with their well-known
deficiencies. This is the compelling reason for refining our tools
on aiatomic molecules which, although perhaps of less immediate
interest to the tradiational chemist, provide a much more economi-
cal medium for the evolution of new techniques.

We feel that the calculated results on the alkali dimers do
represent an example of chemistry from computers. The isolated
energy point or wave function did not rerrecent chemistry, but a
potential energy surface then used to pred?:: ninding energy,
and ultimately transport properties must be ccnsidered genuine
chemistry. More important, we are now thinking more compre-
hensively in terms of complete chemical! processes, potential
energy surfaces, ground and excited scrtes, state functioas,
virial coefficients -~ all of which for sclected simple systems
can now be obtained from computers and from computzr calculations.
It is more important now, therefcre, than previously that
theoreticians talk to experimental chemists because I think
that many cherists do not know how far the tield of computational
chemistry has come. Likewise, thevreticians do not know how
intimately new experimental techniques are probing molecules and
how much interesting chemlstry there is in the world of small
molecules. It is also important that theoreticians and the
experimentalists feed these ab initio numbers into existing semi-

empirical theories, and that through this prccess the semiempirical
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rules be upgraded by what might be called semi-ab-initio rules
into whi:h new relationships and concepts of molecular inter-actions
obtained frcm accurate calculations are embodied. This is an
important added bonus available from the calculations due to the
"adiabatic" nature of the computing process. We can "freeze" our
numeric model and "look™ at any stage of a process. For example,
we can now watch a molecule form or atoms collide in terms of
their changing electronic charge density continuously being
displayed on a cathode ray tube controlled by digital computers
(Figure 5) during the chemical process numerically under uay.31
Figures 8, 9, 12-17.

In conclusion, we should say that the chemist is not going
to be replaced by the computer -- at least, certainly not by the
computer used in a purely theoretical manner. However, I think that
times have changed in the sense that the chemist can obtain sophis-
ticated, relevant, and accurate answers from computers, particularly
where difficult experimental conditions are required, where the
calculation is feasible but the experiment ‘s not.“‘2 (Computers
don't burn up or melt when the temperature o! your thecretical
model is increased; computers do nct corrode if you perform a
calculation on fluorine; and the time scale of your numeric
experiment can be expanded or contracted at will,)

The new capabilities we have with electronic computers should
be interwoven into the experimentalist's thinking and he really
should consider the alternatives when he seeks a particular
physic-. property of a simple system, "Should 1 measure it or
should 1 compure it?" We shall find that the limits of error in
the computation often are comparable to limits of error obtainabie

experimentally, and souetimes that the derivation 1is more

tractable and economical.
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FILM LOOP m
THE COVALENT BOND: FCRMATION
OF THE HYDROGEN MOLECULE

0
E -
g C
R 50
G C
Y -
~100- | bohr = 5.29 x 10-9 ¢
Kcol/mole e

1 l ] l l [l i L 1 I [ 1
5

10 boh:y
INTERNUCLENR DISTANCE

Fig. 14, Displays the beginning and end diagrams in the formation of the Hy molecule.
The innermnst contour cortesponds 10 a probable electron denslty of .25 e~/boly3 and
each successive outer contour decreased by a factor of 2 down to 4.9 x 10°4 e*/bohe3,

294

i

——



Chemistry from Computer,

FILM LOOP IL
THE IONIC BOND: FORMATION
OF THE LiF MOLECULE

T ' T [ T r T T 1 AS
40 [ ]' I T T T ‘ L] l T _]
20} ~
° - ¥
w 13.9 BOHRS
o -
§ 201 -~
~
a
3 -40f- gl
x
> -60( .
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H
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-l.)O — i n
0| -
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6 8
INTERNUCLEAR DISTANCE

Fig. 15. Displays 3 sequences in the formation of the highly ionic system LiF from the Li
and fluorine atoms, Note change from Li and F atoms to Li* and F~ atoms at a distance
of 13,9 bohrs where the jonic configuration becomes more stabie. in aii diagrams the in-
nermcst cotour corresponds to a probable electron density of 1.0 e”/bohr3 and each suc-
cessive outer cuntour decreases by a factor of 2 down to 4,9 x 1074 e~ /bohr3.
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FILM LOOP X
THE REPULSION BETWEEN NOBLE GASES:
HE-HE INTERACTION

<O3yMmMZ2m
D
>
o
+
n
l

F 2 x10%2 ]
] | bohr = 5.29 x10~2 ¢m
o 1 1 I l T I 1] T I ¥ 1 i
Kcal/mole y 5 10 bohr

INTERNUCLEAR DISTANCE

Fig. 16. Displays the beginning and end diagrams in the repulsive interaction of two helium atoms,
As atoms move together note how the electron charge is squeezed from between the nuclei to the
ends of the molecuie, (A consequence of the Pauli Exclusion Principie.) In aii diagrams the innet-
most contour corresponds to a probabie eiectron density of 1.0 e/bohrd and each successive outer
contour decreases by a factor of 2 down to 4.9 x 1074 e*/bohs3,
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FILM LOOP XTI
The Formation of the Water Moilecule from H and OH

Fig. 17, Displays clectron density contour diagrams for the OH molecule and the H atom and the final
dlagrams for the HoO molecule in its equilibrium configuration. I the OH and HoO dlagrams the inner-
most contour coftesponds to a probable electron density of 1,0 e=/bobe3 and each successive outer contour
decreases by 2 factor of 2 down to 4.9 x 104 e~/bohwd, in the H diagram the {nnermost contour has a
value of .25 e"/bohe3.
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Towards this view we "computer qu :ntum chemists™ are
developing our theory and procedures into self-contained "packgges”
or systems which should be treated as a new piece of experimental
apparatus requiring little or no intimate kaowledge of its
detailed structure.143-1“6 Our ultimate goal is to make these
cheaical computing systems so self contained that the experimental
chemist can ask of them truly chemical questions143 such as "What
is the dipole moment of CaG?" or "What are the vibrational levela

of VC1,?" or "What are the transport properties of alkali vapors?"

2
This requires, of courae, that our computing systems embody not
only mathematical analyais but our procedures and experience in
utilizing these theoretical techniques and that such systems are
capable of continuous growth, revision and eventually learning
from the system's own accumulating experience. It is further
mandatory, if these systems are to be useful to the non-specialiat
that a guarantee of reliability and precision relative to

external reality be made. This haa formulated our rhiloaophy

that only methods capable of routinely producing chemically

uaeful precision be incorporated into the fiunal system concept.
The non-specialist should not be seduced into believing numbers
simply because they are produced in an officious maaner. Due

to the meteoric progress being made in computer design and
capacity and the increasing sophistication163-149 of "computer
chenists”, I have confidence that the above and more provocative

chemical questions shall be poaed to, answered by, and eventually

even formulated by our new numeric apparatus.
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Numerical Solutions of the Vlasov Equation

J. Denavit
Plasma Physics Division
Naval Research Laboratory
Washington, D.C.

ABSTRACT

Ttris paper present a review of numerical solutions of the Vlasov equation
by the FourierFourier transform method and by the direct method of integra-
tion in which the distribution function is pushed in the phase plane. Computer
codes were written to implement both methods and numerical solutions of two-
stream instability problems by both methods are compared. The Fourier-Fourier
transform code uses fast Fourier transforms to compute the convolution term
which appears in the transformed Viasov equation., This technique allows solu-
tions with a large number of modes. In the direct integration code, the dis-
tribution “unction is not generelly reconstructed at every time ctep. The
examples presented in the paper suggect that, by properly choosing the
frequency of reconstruction of the distribution function, it may be possible
to minimize both the noise due to discrete particle interactions and the dif-

fusion which occurs every time the distribution function is reconstructed,
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I. INTRODUCTION

Collective phenomena in collisionless plasmas have been atudied analyti-
cally in terms of the Vlasov equation, which describes the dynamics of a systems
of many charged particles, and Maxwell's equations to describe the electromag-
netic field. Analyticael solutions have often been based on a decamposition of
the spatial dependence of the distribution function into linearly independent
modes, followed by studies of nonlinear coupling between modes. In numerical
simlation of plasmas, a more direct method has heen widely used. Here the
positions and velocities of a large number of particles moving in their self-
consistent field are computed as a function of time.(’™>) Thus the complete
dynami~al state of the system is known at every time step, and average quanti-
ties of interest, such as number densities or temperatures, are computed when-
ever desired. Although the number of particles which may be followed on a
computer is much smaller than the number of particles found in actual plasmas,
particule simlations are conceptually similar to actusl experiments aud have
been successful to provide an understanding of a variety of plasma phenomena.

An altermate approach to the computational study of collisionless plusmss

{62710
il Since it is

is provided by numerical solutions of the Vlasov equation,
based directly on the same equation, this approach lies close to analyticel
methods, It ylelds itself easily to the study of linearized solutione and
mode coupiing effects, However, it is also applicable to strongly nonlinear
problems and can therefcre provide a useful link between particle simuiations
and thecretical results. Since it differs fundamentally in its aporoach from
the particle simulation method, comparison of the two melhods gives an insight
into the validity and limitations of both methods.

The present paper will be limited to one-dimensional problems involving

only electromsmoving over a uniform positively charged background, and periodic

boundary conditions in space will be assumed. Let L denote the periodicity
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length of the plesma and mp the pleama frequency. Distances will be meesured
in units of L and times will be measured in units of wp"'. It follows that

the electric field is measured in 'wits of mme’/e vhere e and m are the elec-
tron charge and mass. The one-dimensicnel Vliesov equation then takes the form

vl om0 (1)

where f(x,v,t) denotes the electra distribution function and E(x,t) is the
electric field, Let E(x,t) = E“t(x,t) +Eint(x,t), where n“t is an external

electric field and £if*

is the internal field due to electrons and the posi-
tively charged background, The internel field is determined bty Poisson's

equation,

bEim: by
> =1l- Ir av (2)

The solutions of the Vlasov equation obey the principle of conservation of
density in phase. The density in phese is the distribvution function itsslf
in the present case. Let (xo, vo) denote the coordinates of s purticls in
the phase plane at time to' At time t, the particle has moved to the phass
point (x,v). Conservation of density in phase requires f(x,v,t) = t(xo,vo,to).
We will see in Section III that this property i1s used for the direct integra-
tion of the Vliasov equation in phase plane,

An irportant propsrty of the solutions of the Vliasov equation is their
tendency to acquire increasingly fins structures in phase plans ar time in-
creases, This phenomenon may be illustrated in terms of ths oscillations of
an electron gas trapped in the potential trouga of an extsrnal elsctric fisld
of the form E = Eolin 2nx/L. Neglecting the internal rield which would not
change the results qualitatively, the slectron trajectories are given by

Jacobl elliptic functions,
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sin 2% = B sn(u,B) ,
= =R en(u,R) q

withu = 211t/'r,m +u,. Here 7, denotes the trapping period and v, the trap-
ping velocity. The modulus R and the constant u, depend on the initial elec-
tron ccrrdinates in the phase plane. The limit cycle defining the boundary
between trappea and untrapped electrons in the phase plane is shown in Fig. 1.
If the electrons are initially distributed uniformly over the shaded area

shown in Fig. 1(a), their phase density at t = 2 g Will be uniformly distri-

K.
buted over the shaded area shown in Fig. 1(b). In the present case, the develop-
ment of the fine spiral structure near the limit cycle is cause? Yy the sharp
arnlitude dependerice of the period of oscillations of trapped electrons in this
region. As time increases, the description of the distribution function re-
quires an ever finer resolution which ultimately exceeds the finite capacity

of compulier storage.

Thls phenomenon has been discussed by Lynden Bell(le)

in relation to the
approach to equilibrium of solutions of the Vlasov equation. When the struc-
ture becames so fine that its scale is much smaller than the characteristic

lengths and velocities of the plasma phenomen& of interest, its description
may be sbardoned and a coarse-grained distribution function f(x,v,t) defined

by averaging f(x,v,t),
1 s

F(x,v,t) = J. I vx(x')wv(v')f(x +x' v e v tax'ar’.  (3)
0 -m

The weight functions wx(x) and wv(v) define the resolution and the exact fom
of the averaging operation. The choice of these functions is an important con-

sideration in numericsal solutions of the Vliasov equation.
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By reversing the sign of t in Eq. (1) it mey be obaerved that soiutions of
the Vlasov equation ere reversible. However, the averaging operation defined
by (3) smounts to neglecting same of the information contein ' in the fine
structure of £(x,v,t). Tius numericel solutions of the Vlasov equation using
this aversaging operation ary not exactly reversible. Since the computation
i of the coarse-grained distribution function also involves the averaging of
diffsrent neighboring values of the original distridbution function, the prineci-
ple of conssrvation of density in phase no longer applies exactly to the coarse-
grained distribution function,

Numerical methods for the solution of the Vliasov equation may be claasified

es (A) direct methods, in which the distribution function is represented

T T R T SRS e e

directly in the (x,v) plane, and [B) transform methods, in which tine distribu-

tion function is first transformed (Fourier transformed for example) and the
transformed Vlasov equation is then integrated numerically. Two types of direat
nmethods have been useds (a) the distribution function may be pushed ir the

(6+8) o (b) the phase plane mey be ini-

(x,v) plane slong its characteristics,
tially divided into a number of uniform-density regions representing the ini-

tial distribution function, and then only boundary points need to be followed

in tim.(g) Transform methode can also be subdivided into several types depend-
ing on the type ¢f transform used. (a) The distribution function may be

l Fourler transformed with respect to both position end velocity,(lo)this is called
the Fourier-Fourier transform method, or (b) the distribution function may be
Fourier transformed with respect to position only and the velocity dependence

(11) The

of each rode represented by an expansion in Hermite polynomiala.
latter method 1s celled the Fourier-Hermite method.
This paper presents a revi.ew of the Fourier-Fourisr transform method and

of ths direct method of Integration in whi:h the distribuiion function ie
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pushed in the (x,v) plane., Computer codes were written to implement both
methods and numerical solutions of two-stream instebility problems by both
methods are conpared,

The Fourler~Fourier transform method, originated by Khorr,(w) is con~
sidered in Section II. Previous solutions using this method had been limited
to a few modes. The present code uses fast Fourler transforms to compute the
convolution term which appeavs in the transformed Vlasov equation, This tech-
nique ylelds a considerable saving in computing time and sclutions with wp to
85 modes, capable of representing strong nunlinear effects have been cbtained.

The code written to implement the direct method of integration is cupable
to generat: "hybrid" solutions in which particles of different masses are ad~
vanced as in a particle code, but the distribution function ls reconstructed
periodically as in a Vlasov code by an averaging operation similar to Eq. (3).
The examples presented in Section IIT suggest that, by properly choosing
the frequency of reconstriction of the distribution functlon, it mey dve
possible to minimize both the noise {or spurious osclilations) due to dis-
crete particle interactions and the diffuwion which occurs every time the dis-
tritution function is reconstricted.

IT, THE FOURIER-FOURIER TRANSFORM METHOD

1, Fourier Trensforms

The spatial dependence I the distributiun function £(x,v,t) and of
the electric rield E(x,t) is reprenggtad in Fourier series as

txvit) = ) g (v,0)etTI,

n=. e

and ‘e
E(x,t) = z En(t)e%inx ,

I Teow

il
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with 3
gn(v,t) = If(x,v,t)e-zﬂiudx ’
o
and 1
5,0 = [Bmet e
o

The distribution functions gn( v,t) for ‘each mode n are now Fourier transformed
with respect to velocity,
+x
igv
Bit) = [ g (vl
- &
with

-iqug .

8 %

g (vst) = -217 H (a,t)e

Since f(x,v,t) and E(x,t) are real, we must have

E*n(VSt), E_n(t) = E*n(t) (%,5)

';_n(vat)

and

H (a,t) = w (-q,8) . (6)

The functions H_(q,t) with n =0, 41, ... are the characteristic functions(>)
of the velocity distributions corresponding to the spatial modes. These func-
tions have an interesting property relating them to the moments of the cor-
responding distributions. Ilet (v\’)n denote the moment of order v of gn(v),

we have

>H
() - e %
dq 90

This property is used in Sectioun II-5 to evaluate the plasma density, momentum
and kinetic energy. We observe in addition that fine structures of the dis-
tribution function in the (x,v) plane, correspond to values of Hn(q) for large

n and q. Thus Lruncating the set of functions %(q) at some finite values
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Boox and Lkt provides a simple way to neglect the fine structure of the dis-
tribution function without affecting eny of its mosents for |nlqm .. A
further discussion of the significance of this truncation will be given in
Section II-k,

After transformation and truncation at #m_ _, the Vlasov equation (1)

max
yields
dH dH
n n - 9
—ﬁ-— + 2nn 24 21 cn(q’t) ’ (8)
where
n
max
C(at) = ) (-emiBR _(at) . (9)
mE-m
Poisson's equation (2) gives
=int _ 1
-2ni¥; = = H (a=0,t) (10)
forn #0 andﬁj;lt =0,

The term Cn is a convolution which comes from the nonlinear term of the
Vlasov equation, Solutions of the linearized Vlasov equation may be obtained
by simply setting

C (e,t) = -2miEH (d) (11)

where Ho(q) is the characteristic function of the assumed spatially homogeneous
velocity distribution. In the linear case Egs. (8) decouple and their solu-
tions may be carried out independently for each mode n # 0. The equation for

n =0 becames trivial. In the analysis of same problems, such as in the quasi-
linear theory, the Vlasov equation is solved including wave-particle interactions
but neglecting mode-coupling terms. Such solutions may be obtalned by using

the convolution term (11) for n # O and setting
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Bnax
C@t) =) (2mtEDH_(0t) .  (12)
" Max
In this case Eg, (8) for n = 0 is of course not triviel and Ho(q) in the temm
(11) 1s time dependent, An example of such a solution will be given in Bection
II1-6.
2, _Algorithm
The charecteristice of Eqs. (8) are straight lines of siope 2mn

o

in the (t,q) rlene as shown in Fig. 2, Brcause of the reality condition (6)
it is only necessary to sclve these equations for n 3 0 so that all charace
teristics have positive slopes. At each time step, the value of Hh(q,t) is
ocvtained from the iterative formul~

&)
B (q,8) = B (q-2mnat,t-0t) + f= (a=2mn 88)84C (q=2ma Bt ,t-0t)

+ 1&; thcr(,i)(q.t) ’ (13)

in which the superscript deaotes the number of iterations carried cut. The

e AR P

results presented later i Bection IT-6 were obtained using a sinlge iteration,

The (t,q) plane is coversd with e €rid with mesh sizes At and Aq. Values

of q in Eq. (13) are chosen to fall at grid points as shown in Fig. 2. The

values of qg-2mn At then do not fall at grid points and the first two terms in
) Eq. (13) must bde iuterpolated. A nine-point Lagrangian interpolaticn was used
in the computations presented. With the mesh size 4q, we expect the distribu-
tion function f(x,v,t) to be adequately defined over the intervel “Voax <V <Y max?
in which v ~1/Aq. At the lower boundary q = Qay? the values of
Hn(q-ann At, t-At) needed in Eq. (13) are unknown. These values are set
squal to zero thus truncating the characteristic function at q = &9 nax’
The convolution terms (9) are evaluated using discrete Fourier transforms.

Consider two arrays of N elements ’&n and Ym, wher: the subscript m is defined

modulo N, and take the discrete Fourier transforms of both arrays,
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Solutions of Vlasov Equation
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(t,9)

CHARACTERISTIC
Aq — SLOPE = 2n

o S50, e AL

; 'qmoxr __________________

Figure 2 Characteristics of Eq. (8) in the (t,q) plene.
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N-1 2ni

- T

XJ = Z Xme b
m=0
N-1 2ni

- 5

YJ 5 ZYme ’
m=0

where J is also defined modulo N. The discrete Fourier transform of the pro-

duct XY, yields

3
Wl i, m
z = z X7, = WXy (14)
390 =0

Thus the convolution msy be computed in terms of discrete Fourier transforms.
However, the modes Em and Hm in the definition of Cn are not cyclic in the
subscript but are zero for |ml>mma.x' To achieve the same result with periodic
arrays it is necessary to increase the size of the arrays by appending zeros,.

Let N be chosen such that Bmmax +1 &N = 2G, vwhere G is an integer, and set

Xm = 2niRE N and Ym = H N
m--§ m-§

for N/2-q <m ‘N/Q""ﬁnnx and X =Y =0 for all other values of m in the

internal 0 <m <N-1. Then comparing (9 ) and (14) yields

N-1
¢ =Y xy . Zn (15)
n /, ‘mnn-m N '

m0

Using a fast Fourier transform a.].gor:lt;hm(:I'h’l5 ) the coamputing time becames
proportional to o logzmm. This compares with a computing time proporticnal
to mzmax when the convclution C  is evaluated by direct summation. Letting

J i 2q,mu/ Aq denote the number of grid points in the velocity transform
direction and neglecting the logarithmic dependence, the computing time per
time step is given by ajmq « The constant @ for a non-optimized code on

the IBM 360/91 was found to be 0.24 ms.
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Solutions of Vlasov Equation

3 . Convergence
At each time step the first two terms in the right member of Eq. (13)

are known quantities evaluated at the previous time step while the convolu-
tion terms Cn(i)(q,t) are linear combinations of the preceeding approximation

Hn(i)(q,t). The matrix of the coefficients of these linear combinations is

0 E, E, E_,
E 0 E E
A . laat . 2 =L
= 3 = = — *
E, E, 0 E,
E, E E; O

The iterative process defined by Eq. (13) converges only if all the eigenvalues
)\d s for j = “Boax® *t*? +mmax’ of this matrix are smaller than unity. Let

lf denote the transposed matrix of A. We have

hy

Tmax z
2 Ty _ 42 z
| sTrace(M) = thamm&x lfml 0
m=l

or

n hyl s s T,

it max
where U =ZL I'f:mr is the electrostatic energy of the system. The iterative
e
process is therefore convergent if
Qax Bt /mma.xﬂ <, 5 (16

This condition is satisfied by adjusting the time step At according to the mag-
netude of the electrostatic energy. In the examples presented in Section II-6,

values of At larger than 0.05 were found to satisfy the convergence condition.
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4, Truncation
We have observed earlier that the truncation of the functions Hn(q,t)
atn = im T and q = #q A results in the elimination of the fine structure
of the distribution which is represented in the high-order modes (in position
and velocity) of Hn(q,t). The turncations at mooend ¥q, . are equivalent

to an averaging operation of the form defined Ly Eq. (3) with weight functions

m
mnax

wx(x) =4l +EZ1 cos 2nnx ,
e

and
sin v
W (V) = e max’
v v
The function Wx(x) has a half-width Ax =1/ om . 8nd the function Wv(v) has a
half-width Av > n/q___. The choice of the cutoff values m,. end ¢ must

be made such that the half-widths Ax and Av are small compared to ‘the char-

acteristic lengths and velocities of the system, For example, if the phenomenon

being studied involves trapping oscillations with a trapping length LTR’ it 1s

generally found that a half-width Ax =-1TR/16 is required. Thus the study of

a two-stream instability in which the mode n =5 1s dominant requires a solution

including approximstely 4G modes. Both weight functions have negative side
lobes which introduce ripples in the distribution function. For sufficlently
small half-widths, however, these ripples remain on a small scale and have no
effect on the large-scale features of the solutions. As noted earlier, the
present averaging operation aocs not affect the moments of the dlstribution tuv
any order,

5. Conservation Laws

Setting n =0 and q = 0 in Eq. (8) ylelds

TOFHO(O’t) =0 . (a7
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Solutions of Vlasov Equation

Let I{:(q,t) and H1(q,t) denote the resl and imsginary parts of H (q,t). The
reality condition (6) requires Hﬁ(o,t) =0 and HOR(O,Q) donotes the (noemalized)
mmber of particles in the system. Thus, Eq. (17) is an expression of the con-
servabion of perticles in the system, From Eq. (13) we observe that Ho(o,t)
must remain constant, and particle conservation is therefore satisfied exactly
in the mmerical solution,

Taking the derivative of Eq. (8) with respect to q and setting q =0 and

n =0, in the case where no external fields are gpplied, yields

% \ 7q -

The reality condition (6) requires Hz(q) to be an even function and Hg(q) to

be an odd function. Thus, the above equation reduces to

A (bﬂg) )
- |- = v s 1
»t dq 4=0

wvhich is an expression of momentum conservation in the system.

Taking the second derivative of Eq. (8), truncated at m . and setting
q =0 and n =0 ylelds

- 5 0 =0
T 2\ 0oe . +le H(a | 9

In deriving the above equation, it has been assumed that no external fields are

(2mm) 2

applied, and use has been nade of the reality condition (6) which implies

(baﬂi/ 2q3) 50 = 0. The first term in the bracket represents the kinetic

_ 1(°2H§)
T=- 3 0
d0 2

Q=0

energy of the system,

and the second term represents electrostatic energy,
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Thus, Eq. (19} is an expression of the conservation of energy in the system,
T + U = constant. Since Eq. (19) was derived fram Eqs. (8) truncated at F LI
a check of the energy cannot reflect errors due to truncation but only errors
due to other causes.

Momentum and energy checks are carried out in the numerical solution by
differentiations of the central difference interpolation fomula.(l6) for the
functions Hg(q) and Hg(q) at g = 0, Five points on either side of q = O are used.

6. Examples
Case l: Two-Stream Instability with Equal Beams

Consider a two-stream instability resulting fram the initial condi-
tions defined by the distribution function

fx,v, t=0) = fo(v) [2 +2¢cosemnx] ,

with
R A
£(v) = —2 __ Ve ¥y,
el v J/en
th
and Vip T 0.3/m, ¢ = 2,5 102, These initial conditions correspond to a sys-

tem length L = 10,5\, where Ay = "th/"’p is the Debye Length, The initi.lly

excited mode has a wavelength equal to the length of the system, i, e., (or~

3 responds to the first mode n = 1. The linear growth rates for this problem

l have been computed by Grant and Feix(r(). The first mode is the only unstable
mode and has a growth rate Y = 0.2k,

The solid curve in Fig. 3 corresponds to th2 electrostatic energy with

& T —————r

B = 21, q, = 256 and Aq = k. This energy grows at approximately the
linear growth rate from t = 10 to t = 20 and saturates at 2.2% of the total

energy. The frequency of trapped electron oscillations at saturation is
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oy = 0.33, which corresponds to & trapping period ¥ .. = 19.2. After satursa-
tion the electrostatic enexgy oscillates with a period of spproximately 20.
The smplitude of the first mode (n =1) ucpprmnulyonorderdnsnime
larger than the asplitudes of the other modes (n »2). The higher-order modes,
howanr,weasimncmterfectmthesolutionushombythebrobnlm
in Pig. 2 which correspands to a truncatbn ltlhx =10, The solution was
chechadbyreverlingita’ct =20 and the small broken line near t =0 in

Fig. 3 shows the deviation of the reversed solution fram the forward solution,
The relative energy error is 2 107%.

Viesov solutions for this example have been carried out by Armstrong
l!ielson(u) using the Fourier-Hermite method. These solutions, however, were
1imited to five and six spatial modes and deviate from the present results for
t »25. Particle simlations have also been carried out by Armstrong and
nehon(n) and by Denavit and mr(le). The results of thege simulations are
in close agreement with the results of the present Viasov solution.

Case 2: Two-Stresm Instability with Une Beans
Consider nov an instebility resulting from the interaction of a smell

beas with a Maxwellian plasma. The initial conditions are
A
2(x,v,t0) = £.(V) [1 +2¢ choc (2rnx + 0 )] .
[+] XY n

with

fo(v) = 7"‘1'_ [npe‘vzlv; * nbe‘(v°vd)2/v§] 5
P

wd v, = 21078, v, = 2.6 Yo Yp =0.25 v, Ay =0.95, o, =0.05, ¢ = 2,5 1074

and initisl phases$ = chosen at random. Thus the small beam contains 54 of the

plasms and its mean velocity is 3,66 thermal velocities. These initial conditions

correspond to a systea length of 100 ’D
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Solutions of Vlasov Equation

The dispersion relation for this case is

e (E) 2 ()

n
P

{ V4
b

)= ! (20)

Solving this equation for the growth rate Y = Im® gives the curve shown in
Fig. 4. We ncte that modes n = 1 through 9 are unstable.

Linear numerical solutions, based on the convolution term (11), were
carried out and the corresponding growth rates are shown by the circles in
Fig. 4. The values of Y given in Fig. 4 correspond to the growing modes of
the plasma. For each value of n, however, the plasma also has damped modes

which correspond to other zeros of the dispersion relation (20). An initial

pertwrbation in density generally excites several damped modes in addition to
the growing mode corresponding to a given value of n. Linear solutions thus
generally display an initial transcient which must damp away before the growth

rates corresponding to Fig. 4 can be observed. In the case of the weskly grow-

ing modes such as n = 1, the transcient behavior was found to be dominant for
long times (t = 100)., Thus it is unlikely that such weakly growing modas
~an be observed in a nonlinear problem.

A "quasi-linear" numerical solution, in which mode-coupling terms were
neglected, was carried out using the convolution terms (11) and (12). The
electrostatic energy for this solution is shown in Fig. ,. The most unstable
mode, n = 5, is dominant in this solution. The electrostatic energy saturates
at approximately 2.1% of the total energy. The freguency of oscillations cf
electrons trapped in the potential trough of the duminant mode is @, = (2ﬂn-§n)*
=0,148, for n = 5, We observe that this value is ~lose to tiic growth rate of
mode 5. After saturation, the electrostatic energy drops sharply and oscillates

at a lower level.
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The electrostatic energy for the nonlinear solution, including mode cou-
pling, is shown in Fig. 6. This solution was carried out with Mooy = k2,

Yax = 25/vp and 4q = q_max/128. The electrostatic energy saturates at approxi-
mately 1.6% of the total energy then falls and shows several oscillations at

a lower level. We observe that the "quasi-linear" solution shown in Fig. 5 is
qualitatively correct. The effect of mode coupling is to decrease the growth
rate and lower the saturation value,

The density in phase near saturation is shown in Fig. 7. Numbers froam
1 to 9 indicate relative densities., Blanks correspond to densities which are
less than one-tenth of the maximum density. Negative signs correspond to nega-
tive values of the density larger in magnitude tnan one-tenth of the maximum
density.

Particle simulations have been carried out for this example by Mcrse and
Nielson(5 ) and Denavit and Kruer(la) + The results of Morse and Nielson agree
only qualitatively with the present Vliasov solution. The differences, however,
may be attributed to the longer periodicity length considered by *hese authors
and the random nature of their initial conditions. Thie results obtained using
Kruer's finite-size particle code with a quiet start(ls) agree quantitatively
with the present solution out to t > 70, after which the two solutions remain
in qualitative agreement.

Case 3: Echo

The echu problem considered here corresponds to an example given by O'Neil

and Gould(19). A uniform plasma with a Maxwellian velocity distribution is
initially excited by an external electric field pulse with wave number k.

Mode k, then decays exponentirily at the Landau damping rate and the perturba-
tion part of the distribution function takes the form f,(v) exp (-i k;x + ik.vt).

For large t the integral over v of this distribution function phase mixes and
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Solutions of Vlasov Equation

does not result in any density perturbation., A second wave of wave number ko is
then excited by an external pulse at time .. This wave also damps out but it
modulates the distribution function of the first wave to give a second order
Aistribution function of the form £1(v)f2(v)exp{i(ka-ki)x-1(ka-ky)vlt-koT/(kp-k1)]}.
At time T’ = koT/(ke-k1) the coefficient of v in this exponential vanishes and the
integral over v no longer vanishes. A new wave, called echo, then appears in
the plasma with wave number ks = ko-ki.

In the example considered here, kX, = 1/2 and ngD =v2. Thus lggXD =
1//2 and the echo appears in the initially excited mode at time T’ = 27T. The
thermal velocity is chosen as Vi, = 1/2n/ 2 = 0,115 so that ki and ke both
correspond to mode n = 1, while k2 corresponds to mode n = 2. Mode n =1 is

excited initielly by applying an external electric field Egm(x) = EDRS:UI?TTX

withE = o.hhhvth fram t = 0 to t = 0.2, and mode n = 2 is excited by apply-

IR
ing the exterral field ECX®

(x) = EDRsinh nx from t = 10 to t = 10.2. Only five
spatial modes are retained in the present computation. Since the echo depends
on the fine structure of the distribution runction it is important in the present
case to retain this structure and o is chosen so that modes n=1 ton =14
are not turncated out to t . = 30, thus Yoy = B"tma.x = T55. With 48q = qmax/256
the distribution function is adequately represented out to v, =1 Jbq = 3v
The density perturbation for mode n = 1 is shown on a logarithmic scale
at (a) in Fig. 8. It rises rapidly during the short driving period, then decays
exponentially at the landau damping rate (Y = - 0.40), The echo appears be-
tween t = 10 and t = 30 with a maximum at t = n = 20. The echo is shown on a
linear scale at (b) in Fig. 8. The results shown on this figure agree with the
results shown in Fig. 1{A) of 0'Neil and Gould.
III. DIRECT INTEGRATION FHASE FPLANE
1. Algorithm

According to the principle of conservation of density in phase, the

solution of the Vlasov equation may be written formally as
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Solutions of Vlasov Equation

£(x + 8x, v+ v, t +4¢) = £(x,v,t) (21)

in which 8x and v are the position and velocity increments during the time

interval 4t of a particle located at (x,v) at time t. The phase plane is
covered with & rectangular grid with mesh sizes Ax and &v as shown in Fig, 9.
The grid extends frorm T to +-'vmax and the value of Ve is chosen large
enough so that the grid covers all significant portions of the phase plane.

The position and velocity increments are computed by considering sample
particles of masses f(xj,vk,t) located at the grid points (xj,vk), and compu-
during the time inter-

ting their position and velocity increments 6x X and bv

J Jk
val At, The sample particle locations in the phase plane at t + At no longer
correspond to grid points and the distribution function must be reconstructed
at that time by distributing the mass of each sample particle among the neigh-

btoring grid points,

?(le,vkl,t+At) Sl f(xj+ 6xjk’vk+ bvjk,t+At) wx(xj'-xj'axjk)wv(vk'-vk-cvjk) (22)

Applying this operation to the solution of Vlasov's equation (21) yields
f(le,vkl,t+At) = J%k f(xj,vk,t)wx(xj'-xj-éxjk)wv(vk'-vk-bvjk) (23)

The weight functions L and v, determine what fraction of the mass of a sample

particle is assigned at each neighboring grid point. The discrete sum in Eg.
(22) defines an averaging operation similar to Eq. (3). In the present metnod
the averaging operation must be carried out by a discrete sum instead of an

# integral since the phase plane iiself has been discretized by the introduction
of a grid., Weight functions for which the averaging operation conserves any

] finite number of moments are derived in Sec. III-2, It is not possible, hLowever,
to derive functions L and v, for which all moments of the distribution function
are conserved, as was done in the Fourier-Fourier transfoim method. This

resulte in same diffusion of the distribution function in the phase plane.
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The evaluation of the position and velocity increments 6xjk and 6ij of
the sample particles is presented in Sec. III-3. The method uses an area
weighting scheme and is based on a lagrangian formulation of particle dynamics
in which energy is conserved(eo).

In a number of problems of physical interest, the initial distribution
function consists of several relatively cold beams and only a fraction of the
phase plane is occupied by perticles. As the solution proceeds in time, the
principle of conservation of density in phase (which is still appraximately
satisfied by the numerical solution) requires that this fraction must remasin
constant. Where no particles are present, the distribution function is zero
and does not need to be advanced. This is achieved in tne code by setting a
threshold value (for example 10 > times the maximum value of the distribution
function) belew which no sample particle is considered. The electric potential
is computed by Fourier transforms so that the electron density is automatically
renormelized at each time step., Thus, the slight loss of particles resulting
from a finite threshold does not result in the build up of a net charge in the
plasme. This feature of the direct metﬁod of integration, which has no coun-
terpart in transform methods, may yield a considerable saving of computing time
when multidimensional problems are considered.

It is not necessary to reconstruct the distribution function by the averag-
ing operation (23) for every time step at which the electric field is computed.
If 8t is the time step used to advance the sample particles, the electric field
needs to be computed after each 4t increment, but the distribution function can
be reconstructed only every NAt, where N is a properly chosen integer. In
addition to seving computing ti:.>, this procedure reduces the diffusion in phase
plane caused Ly application of the averaging cperation.

The Vlasov solution described above in which the distribution function is

reconstructed only every Nth time step tegins to resemble parlicle solutions.
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Solutions of Vliasov Equation

Particle solutions in which particle of different masses are loaded on an
(x,v) grid to represent the initial distribution function have been used by

(5).

ryers In such solutions the plasma consists of a number of discrete small
beams, which are subject to instabilities having growth rates Y™ k 8 v where
k = 2™ is the wave number and 8 v is the velocity interval between beams
(equal to the mesh size). 1In particle solutions, the distribution function is
never reconstructed (N = ®), and beaming instabilities occur at time tmax =
2n/k A v (see Appendix). Iy reconstructing the distribution function at time
intervals which are small compared to (k& v) ~%, the plasma is forced to be-

have as a continuum and no beaming instabilities can develop.

2. Weight Functions

To derive weight functions wx(x) and wv(v) for which the averaging
operation defined by Eq. (22) conserves a finite number of moments it is suf-
ficient to consider the one-dimensional operation

£lvy0) = X £y * b Ju(vyrov =bv). (2b)
J
The weight functions thus found will be applicable to either coordinate or
velocity. Such weight functions, conserving zeroth, first and second order
moments have been derived by K-W Li(7).

a. Moment Coucervation Co:. ditions

The moment of order n before averaging is

RN 5. n
(v') = ) (VJ + 5vj) f(vJ + 5vj). (25)
J
After averaging the same moment becomes
h
<V ) = Z' V?I ¥ (Vj’)o (26)
J

Substituting (2h) into (26) and reversing the order oi the sums over j and N

ylelds
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~

&) =JZ £(vy + ovy) Jz'vg, w(vy rvg-ory).

The moments (25) and (26) are therefore equal if the equality

LN a n
) Vo wls) pvymte) = (v & by) (21)
JI
holds for all values of vy + WJ.

b. Derivation of Welght Functions
Iet k¥ = ’-.‘], since the variable v is represented om a grid with mesh
size Av we have v, , = (3 +k)Av, v, ~v, =kAv and v, = JAv, The moment

J J°d J
condition (27) becomes

) (9" wl(ep)av ] = (39)" (28)

k
where p = avd/ Av. We may assume without loss of generality that t’:vJ i1s positive
and smaller than the mesh size Av so that 0 <p <1. The function w(v) is now
assumed to be even and to extend over Q m2shes Av on either side of the origin.

The condition (28) is satisfied if
Q
Y Pwip)ev]=p" (29)
k=1-Q

form =0, 1, ..., n. All moments up to order n will then be conserved.
We first assume that n is odd end set Q = (n+l) /2. Consider the Lagran-
glan interpolation with n +1 points of the function pmo Since m < n, the

interpolation is exact and we have(ﬂ)

Q
Y @) () o (30)
k =1-Q

in which the functions Ak(n+1) (p) for 1-Q €k €£Q and 0 <p £1 are the Lagrangisn

coefficients with n +1 points. Comparing (29) and (30) yields the desired

332




Solutions of Vlasov Equation

weight funcetion,
vikp)av 1 =" (@),

w(v) = A’(‘n"'l) (k-—i—’;) 5 for (k-1)Av sv skiv (31)

j with k = (1-n)/2, ..., (1 +n)/2. For n even, we set Q =1 +n/2, The
Lagrangian coefficients in this case do nct yield even weight function., Even
weight functions may, however, be obtained by symmetrization as follows,

=)

'éf%n-!-l)(l +% +X

-(%+1)Av sSv s-Lz1 Av

wiv) = {3 A el 1k 4 m] v svskv  (2)

Av

L -2

QA(';H)(l +-’21 - Xy %Av sv s (%+1)Av

with k =1-n/2, ..., n/2.
¢. Examples
For n =1 the averaging operation (24) conservea particles and

momentum. Since n is odd, Eq. (31) is applicable and we have

W =Py = 1.

for 0O v € Av, In the interval - Av <v <0, the function w(l)(v) is defined
by symmetry and it is zcrofor |v|>Av. This function is illustrated at (a) in
Fig. 10. For n = 2 the averaging operation conserves particles, momentum and

energy. Since n is even we apply Egs. (32),
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2Pl + a8Vl r i o
w(azv) = for 0 <v s Av
$a9)(2--) = 3 (-0
for Av sSv < 2Av
This function is illustrated at (b) in Fig. 10, it extends over four meshes
and has negative side lobes., The fifth degree weight function w(S)(v) is
illustrated at (c) in Fig. 10, This function extends over six meshes and has
negative and positive side lobes reminiscent of the weight function
sin(nv/Av) /(nv/4v) used in the Fourier-Fourier transform method.
Most of the camputations presented in Sec. III-lI are based on the qua-
dratic weight function w(e)(v) for wx(x) and wv(v). However, some computa-
tions using linear and fifth-degree weight functions are also presented.

3. Position and Velocity Increments

let ka = f(xJ,vk,to) denote the value of the distribution function

at the grid point (xJ ,vk) at time U and let axJk(t) denote the displacement of

the sample particle of mass f.. located at (xJ,vk) at time t_. The position and

Jk
velocity increments m,jk and wﬁ = &jk will be computed as functions of
(20)

time using & Lagrangian formulation derived by R. lewls . This formulation

yields an algoritim for advancing sample particles which conserves energy in-
dependently of the mesh size &x.

a, Lagrangian Formulation

The electrostatic potential ¥(x,t) is defined in terms of a base
function ¢ (x) and a set of time dependent coefficierts aJ(t) by the linear

combination J-1

Wxt) = ) aBe-x). (33)
J=0
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Here x:l =JAx, for J =0, ..., J-1, denote the grid point locatious and J is
the mumber of grid points in the x direction. The Lagrangian for a systeam of
charged particles is

31 K 1 K J-1
L = Z z Br,al ¢ f Z f;xX @ 0(x+8y -x, )
30 x4 J0 xd = 10
(34)
1) (-1 2 g
+ Io ado (x-xd) - z a.1°(x'xd) dx
0 30

where X is the mmber of grid points in velocity and ¢ (x) =dé/dx. The first

tem in Eq. (34) is the kinetic energy, the second term is the negative of the

interaction energy and the third term is the electrostatic energy of the system.
The equatiors of motion are obtained by taking variations with respect

to the particle displacements &Jk’

J-1

5"xdk = z oz:l(t;)o’(x:l + &Jk-li) (35)
i=0

and Poisson's equation is obtained by taking variations with reapect to the

potential coefficients &

1’
J=1 1 1 J=1 K
z oy Io o'(x-xi)o’(x-xd)dx = Io@(x-xd)u - ZZ fu@(x1+&1k-xd) (36)
i=0 1=0 k2

b. Base Function

The specific algorithm to be used now depends on the form of the
base function #(x), which determines the charge sharing scheme to be used in
advancing particles. In the present algorithm, particles having & triangular
charge distribution with half-width Ax are used, The corresporling base
function is
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r u‘}é“"&')‘ for-%-x—sxs-é;—
o(x) = ¢ %-(—Aix-): for--‘"é—sx s+-A-2£
K%--—-) for -A-;-stz%-

Let x, , dencte the grid point Jocation closest to the ssaple particle (Jk)

J
ari set p = (xJ + &gy ox, )/ bx,then [p| < § When the sbove base function is

substituted into the right member of Eq. (35) the sum reduces to three terns

and we have
3k ='A_x' [-aJ 1.1( }p) = mjlp +af 41( M)] (37)
Substituting the base function into Eq. (36) ylelds

8'x

'6'— [-aj My +6a -2a -‘1‘14,2] = & - By (38)
where
J K
aJ =z Z fiko(xi-'»mik-xd) (39)
10 k=1

is the charge assigned to grid re 1nt j. Note that the left member of Eq. (38)

is a finite-difference representation of the gecond derivative of the potential.

Since periodic boundary conditions are assumed it is convenient to solve

Foisson's equation by discrete Fourier-transforms. Iet

2 2
_ “2 2ol ooy
aﬂ = CIJQ
30
and J-1  2ni

Zﬁe "

denote the transforms of the arrays aJ and B,. Multiplying Eq. (38) by

exp(2ning /J), sumring over § and solving for a’n ylelds
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. B,
% LJsin® (12 sir’™) (bo)
syl A s
The array : is then obtained by taking the inverse transform of an.

ik and aJ 38 carried out by a

conventional leap-frog scheme. Since the distribution function requires simul-

The time integration for the quantities &x

taneous knowledge of the particle positions and velocities, a half-time step is
taken just before and after each reconstruction of the distribution function.

The camputing time to advance the sample particle was found to be approxi-
mately 0.5 ms per particle, per time step, on the CDC 3800. 'The computing time
to reconstruct the distribution function with quatratic weight .Junctions was
approximately 0.7 ms per particle.

c. Energy Conservation
As a consequence of the Lagrangian formulation, the present algo-

rithm ©~ advancing the sample particle concerves momentum and energy indepen-
dently of the mesh size 4x . The expression for the total energy is provided

by the Hamiltonian

J-1 X J=1 fl
H = *Z Z £, SR &Z aqa S 47 (xex )ax (41)
J70 k=1 1,J=0

The first term in the rigat member of Eq. (4l) represents the kin.xic energy
of the system and the second term represents the electrostatic energ, U. The.

latter term may be conveniently evaluated using the Fourler transformed array

an, J'l
u(-) = EX ana-n sin® ™ 1 251 ™ i (u2)
Y & 3 g
i, Examples

The problems of two-stream instability solved in Sec. II-6 by the
Fourier-Fourier transform method are reconsidered in the present section using

the direct method of integration.
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Case 1: Two-Stream Instability with Equal Beams

The electrostatic energy for three solutions of this problem is shown
in Fig. 11, All three curves correspond to the same maximum velocity, v —
b2 Vips the same mesh sizes, Ax = 1/32 and by = '2vmx/120 and the same time
step 3t = 0.2. The threshold, i.e., the minimum value of the distribution
function for which a sample particle is considered was set to zero.

The solid curve corresponds to a reconstruction of the distribution func-
tion every ten time steps, using quadratic weight functions. This curve shows
good agreement with the 21-mode Fourier-Fourier solution given in Fig. 3. The
broken line corresporids to a reconstruction of the distribution function at
every time step, also using quadratic weight functions. We observe a decrease
in the amplitude of trapping oscillations. This is attributed to a diffusion
of the distributicn function in phase plane due to repeated applications of the
averaging operation defined by Eq. (22). Note that although energy is conserved
in the averaging operation, higher moments are not conserved. This tends to
flatten the distribution function resulting in the escape of trapped particles.
The curve drawn with dashes and dots in Fig. 11 corresponds again to a
reconstruction of the distribution function at every time step. This time,
however, linear weight functions were used. The distribution function flattens
rapidly in this case, filling the hole located at the center of the trapping
region.

Because of the rather long tails in the distribution function in the present
problem, particles are lost over the boundaries at v =% Viax® For both solu-
tions wi‘h quadratic weight functions, the relative particle loss is & 2074,
After corrections for particles lost over the boundary, the relative energy
error is 5.5 10 >, For the soluiion with linear weight functions, the relative
particle loss is 2.7 10" and the relative energy error after correction for

2
lost perticles is 6.2 10 .
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—— QUADRATIC WEIGHT FUNCTIONS, N=10
. e— QUADRATIC WEKGHT FUNCTIONS, Nt
301077 —-— LINEAR WEIGHT FUNCTIONS, Nt

Voo o4

10 1074

Figure 11 Electrostatic energy for two-stream instability with equal

beams, Case 1, by direct integration method.

15108
——— QUADRATIC WEIGHT FUNCTIONS, AX=0.008
-==== QUADRATIC WEIGHT FUNCTIONS, AX10.016
— —-— FIFTH DEGREE WEIGHT FUNCTIONS, AX200i6
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v
0.5 108
A . i i i 1
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t

Figure 12 Electrostatic energy for two-stream instability with unequal

beams, Case 2, by direct integration method.
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An additional computation was carried out in which the distribution func-
tion was never reconstructed. The code then operated as a particle code with
particles of different masses initially arranged in a regular array in the phase

plane. Phase plots for this run showed beaming instabilities starting to appear

at t = 10. The total electrostatic energy showed only minor deviation from the
solid curve in Fig. 11 out to t ™ 22, after which it broke into spurious
oscillations.

Case 2: Two-Stream Instability with Unequal Beams

The total electrostatic energy for three solutions of this proolem is

shown in Fig. 12. All three curves correspond to the same maximum velocity
Viax = lwp, velocity interval Ay = 2vmx/l20 and time step At = 0.2 with the

distribution function reconstructed every 10 time steps. A threshold equal to
107° times the maximum value of the distribution function was set. Below this
threshold no sample particles were considered.

Note that the present case involves five trapping regions (mode n = 5 is
the most unstable mode) so that smaller values of &x should be considered than

in the previous case, The solid line in Fig. 11 corresponds to 4x = 1/128

with quadratic weight functions. This curve shows good agreement with the

Fourier-Fourier solution shown in Fig. 6 out to t = 60, after which the two

solutions remain qualitatively similar. The broken line corresponds to 8x =

1/64, again using quadratic weight functions. The amplitude of trapping oscil-

oo

lations is reduced in this case. The curve drawn with dashes and dots in Fig.
; 12 corresponds to Ax = 1/64 using fifth-degree weight functions. We observe
1 that the use of higher-order weight functions tends to reduce samewhat the dif-
fusion of the distribution function in phase space.

The density in phase near saturation with Ax = 1/64 and fifth-degree
weight functions is shown in Fig. 15. This phase plot may be compared with Fig.
T which shows the density in phase from the Fourier-Fourier code at approximately

the same time,
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The relative particle loss with Ax = 1/128 and quadratic weight functions
1s 4 107® and the relative energy error is 3.5 10™¢, Camparable values of the
particle loss and energy error ure found in the other two computations.
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APPENDIX

Beaning Instability
The time interval between reconstructions of the distribution function in
the method of Sec. III may be estimated in terms of Dawson's theory of plasma

(22) « Consider a one~-dimensional system of elec~-

oscillations of electron beams
tron beams with velocities V, = 0A v and densities K, = N(Vy) Av, with

c=0, %1, £2, ..., moving over a neutralizing positively charged background.
Let nc(x,t) and vo(x,t) denote perturbations in density and velocity for each

beam. The linearized equations of motion and continuity for each beam and

Poisson's equation yield

o
<

o 4 Ve | e
o0t ¢ x mn ’
dv d
% v m e ., o M = o,
0t dx 9 box
dE
— = ehmne X
Ox o .

-1 (wt-kx)

Assuming solutions of the form A(x,t) = A(w,k)e for the perturba-

tion quantities yields

_ lhne2 Ny

A i )
= bme 1

Vo(®,x) = A0€ K(@-kV,) (uk)

Lnei
Bow) = - (45)
with the dispersicn relation
yme? %
'l': g (m-kvjr 1. (46)

Dawson has shown that for 8 v <0, the left member of Eq. (46) may be written

&3 the sum of an integral and a singular term. For a Maxwellian beam densi’ -

o s
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distribution K(V,) = (n //ZW vy, Jexp(V3/2v5, ) the dispersion relation

becames
T2 Comety cyrmg ¢ c2(0) (1)
where Z(C) is the plasma dispersion function with { = M2 kv ne The positive

sign is to be used in Bq. (47) for Imw>0 and the negative sign for Imw<Q.
Yor each k, Eq. (47) has two complex conjugate roots corresponding to each
beam. letting® = a, + 18, and {, = OAv,VQVth yields

kAv CaImZ(Q,)
% T W \TeeRTany) Tt S
and ki
B = + X8V V.0 Yeh 2
S ’ el (49)

~dm [(1 + KA + CRez(C,)) + (c,xmz(g,))z]t
Eqs. (43) and (44) are normal modes for a given k and satisfy the normali-

zation relation

2L 75 ety o (50)
5=~ (w+w' -2kV )n_(0,k)n (0',k) = 0
o & o’% hd H(w,k) for ® = v’ g

Yor Av+0 and a Maxwellian beam distribution the function H(w,k) reduces to

F 2nmily+ +
H(w,,k) = e ,1 ?)'%— [1 C,Z(Co)]‘ (51)
i To verify that the instability occurring in the code described in Sec. III,

when the distridbution function is not reconstructed, is indeed a beaming in-
stability, a computation was carried out for a Maxwellian beam distribution
with vth/Av = 5, An initial density perturbation was applied to the central

be“’
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eN_ _  co8 kx for ¢ =0
x,t = 0) = 9=0
g, (52)
4] for o f o

with ¢ = 0.0025 and KA} = w/5. No initial velocity perturbation was applied.
The central beam velocity at x = T/2k from the code of Sec. III is given by
the solid curve in Fig. 14. There is a gentle growth out to t = 46, followed
by a sign reversal at t = 48 and a very steep growth for t > 48, The electric
field for this computation first drops rapidly to very low values, then sudden-
1y reappears to reach a maximum 23 times its initial value at t = 2"/kAv = 50.
Expanding the velocity perturbation of the central beam into normal modes
and using the normalization relations (50), the initial conditions (52) yleld
v e PO LR
EERC o Sl o sa = om SR
The terms of the sum in Eq. (53) oscillate with the frequencies @, given by
Eq. (48), approximately equal to the Doppler frequencies X6 Av of the beams
and grow exponentially with growth rates B, given by Eq. (49). The damped
terms corresponding to the negative sign in Eq. (49) are ignored. The expre-
sion in brackets in the denominator of Eq. (53) is the ILandau denominator
which in the present case has a minimum near ‘v = 1.8, Thus, the dominant
terms of the sum in Eq. (53) occur for 0 ™ 0, which corresponds to the
minizum of 4’: and 0 > £ (1.8) favth/l\v =~ 13 which corresponds to the minimum
of the landau denominator.
Yor t < 2n/khv = 50, the terms corresponding to O ™ % 13 phase mix and
the behavior of the velocity perturbation Voun is given by the terms near
O = 0, The growth rates for these terms is B, , = 0,08, The circles in
Fig. 14 give values computed by taking 0 = 0, 1, £ 2, These values are
in good «:5reement with the computer results obtained by the method of Sec.

I.
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nepwthntcforthctemcorrupondingtoc“'*B1aﬂ*15=0-06.
For t ™ 2n/kAv = 50 these terms no longer phase mix. By this time they
have grom Uy a factor of approximately 20 and therefore give rise to a

strong echo, This is evident in the solid line in Fig. 14 for t > 48, and
also agrees with the electric field results which show a sudden >egrowth

sl i o B e

with a maximm at t = 50 which 1s 25 times the initial electric field.
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Figure 14 Velocity perturie.ion of central beam for beaming instability test,
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Choice of Grids in Low-8 Fluid Computations

N. K. Winsor and E. C. Bowers
Princeton University
Princeton, New Jersey

ABSTRACT

When the magnetic stress is large compared to the
plasma pressure, the magnetic field geometry controls the
plasma behavior. Por finite difference calculations of this
behavior, the grid should be chosen to fit the geometry,
Three coordinate systems are presented, and their relative
merits are compared. Sowe general technigues for a 1lov-§
simulation -- in particular, the conservation-lav form of
the equations and the “symbolic® style of programming -- are
discussed and recommended. A proposed simulation of the
adiabatic toroidal compression experiment is used as an
illustration of the advantages of writing a fluid code in
curvilinear coordinates,

I INTRODUCTION

Numerical calculations in plasma physics are routinely
more complicated than hydrodynamic or gas-dynamic
calculations with similar initial and boundary cunditions.
Pirst this is because ve are dealing with a minimum of two
species, Pields are usually important as well: an
electrostatic field in the B=0 case, or the combined

electric and magnetic fields in the general case.
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§e consider here the lov-g regime of plasma physics in
vhich the magnetic field is so strong that the effect of the
plasma on it can be igrored, Then the physics of tha
problem looks even’ less like the field-free one; the
magnetic field plays a donminant role in the determination of
the fluid motion. Velocity and current components are very
different in magnitude parallel and perpendicular to the
magnetic field.

The lov-g case can be studied numerically by particle
simulation, and this treatment is essential vhen details of
the velocity distribution fur:tion are iaportant, as in
collisionless regimes, or vhen locs cones are present,
Hovever, vhen the plasma is collisional and velocity-space
instabilities are not importait in transport processes, a
tleid model can usually obtain the results of physical
interest vith less computition. Por the lov-8 case, this
seans going from an essentially Lagrangian coordinate system
associated vith the particles to an ERulerian coordinate
System associated vith the magnetic field.

There is a class of "local™ and "slab™ problems of
interest in this case, but for comparison with experiment, a
fluid model must deal vith the global properties of a plasma
and must take note of the magnetic-field geometry of
interest: cylindrical, toroidal, dipole, etc. Ve vill
discuss some of the important considerations in tailoring a
coordinate system to the geometry, and reducing the system
of differential equations for the fluid variables to

difference equations on a mesh.
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Low-f Fluid Computations

In tha finite and high-8 regimes it is frequently
convenient (Boris, 1969) to use a Cartesian coordinate
system, with B one of the variables to be determined; then
gquantities such as current and mass flux are not readily
related to magnetic surfaces. Thas Cartesian coordinates
have the drawback that some physically intecesting
pacameters are inconvenient to Calculate., On the other
hand, they have the advantage that derivatives of the basis
vectors vanish., This greatly simpiifies the difference form

of the equations of motion. As an example, consider the

convective derivative dysdac:
FoF o
In Cartesian (x,y) coordinates, it can %be approximated by
the centered differences
dv

e a? Ican = vx[ vx(x +8x/2, y)- v, (x- 0x/2,y)]/6x+ O(&xl)

5 2
+ vy[vx(x.y+6y/c)-vx(x.y-bv/?-)] /8y +O0(Ay") .

In curvilinear coordinates, additional terms are present:

dv dXI
-e-x.d-!-. =:x.[:iTé +g(_r,1)x.x+9(£.t)x-\:+:(:.!)].
Curv Cart

These arise from the acceleration experienced by a fluid
element following a coordinate line. Here the e's are unit
vectors in the indicated directions. The effect of
coordinate cucrvature is given by thc‘g}r tecm; the last two
terms are pregent only vhen the coordinates are explicitly
time-dependent. Terms such as these will appear vherever
the equations of motion apply a differential operator to a
vector quantity. Thus curvilinear coordinates have the

drawback that differential operators take a more complicated

form.
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Winsor and Bowers

Curvilinear coordinates have the advantage of freedoa
of choice: once a curvilinear coordinate system is admitted,
it can be chosen to fit the boundaries and to minimize the
effect of special cases, such as curvature of the boundary
or the origin of a cylindrical coordinate system. One can
also put more mesh points vhere they are needed: where the
physical behavior shows more detail, or vhere velocitius are
larcger.

In lov-8 problems, the geometry of a curvilinear
coordinate system is usually dictated by the magnetic
field. When containment of plasma is desired, it is helpful
to have a magnetic field geometry vwiti magnetic surfaces,
surfaces everyvhere tangent to the magnetic field., Plasma
confinement times can be expressed most readily in terms of
mass flux through a magnetic surface, divided by the total
mass contained by it.

In general, megnetic surfaces need not exist, but they

are present vhen the kydromagnetic fluid equations,

are satisfied (Kruskal, Kulsrud, 1958). Por problems with
cylindrical or toroidal symmetry, the magnetic surfaces can
be coordinate surfaces. The interesting geometries for
containment are those in which the magnetic surfaces are
nested; for closed magnetic surfaces, these must be
toroids. ror open geometries, fluid calcuvlations often
neglect end effects and apply periodi: boundary conditions
$0 that the model resembles one with closed surfaces.
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I COORDINATES

We are nov going to introduce three coordinate systems
for aeometries possesing magnetic surfaces, starting with
the most popular (and restricied) and ending with the most
general. Fach is a candidate for a numerical differencing
grid.

The first has been called the ®toroidal slab model.™
It appears to be the simplest magnetic field model which
permits realistic computation of plasma behavior in an
axisymmetric torus. It is shown in Pigure 1. (The usual
cylindrical cocrdinate system is a special case, with R
infinite,) The magnetic surfaces are circular, and the
rotational transform (the pitch angle around the magnetic
axis for a field line going around the major axis once) is
an arbitrary function of radius. This magnetic field has
the advantage of simplicity, as ve shall see in detail
later, but it has the drawback thatVXB is not zero. That

is, the currcnt producing the transform is
Bo 8 __ rRf

Jext® 2XB =2, 9 Rorcosd °
and in a lov-g model this current must be carried by
imaginary Yvires" immersed in the plasma. When
electrostatic, arxisymmetric systems are considered this
cuttént is ignorable, since Efﬁext'o' and it does not affect
the dynarics., Th.. metric of this coordinate systenm is

2y rzd02+(l--§cose)zdzz,

dlz= dr
and the surface and volume elements car readily be obtained

from this,
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MAJOR s |
OF TORUS
B=8B [gof(r) +£.]/[l- (r/R) con 8]

Pigure 1. 1The geometry cf Pfirsch coordinates, and the
magnetic field expressed in these coordinates,

This is the geometry Pfirsch and Schliter (1962)
introduced to study diffusion in a torus. Bineau (1967)
believed the lack of self-consistency cast doubt on their
result, but Johnson and von Goeler (1969) demonstrated that
the essential resualts of Pfirsch and Schluter vere valid for
a general vacuum field, This geometry therefore seems
adequate for equilibrium or diffusion calculations with
toroidal symmetry.

The second coordinate system describes an axisymmetric
vacuum field and is closely related to the magnetic flux.
In the toroidal case, the field is separated into toroidal
and poloidal components B = ElygF; The turoidal part Bt has
the usual 1/R dependence relative to the major axis. and the
poloidal field can be described by a potentiald, or by the
magnetic flux the short way x , and the angle 6 the long
way. Thus,

B= RBTVG-#V‘P
= RBTV9+Y_9X !X
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Low-8 Fluid Computations

NN T NN

1 Toroida! field coil (TP)
2 Poloidal field coil (PF)
3 External field coils (EF)
4 Horizontal probe

Local shear length

28Ry 4
" -——a,—-vh-*ﬁma,,n
(a)

figure 2. The machire diagram of a sphwrator, showinj the
cross-sectional shape of magnetic surfaces,

Here RBT is a constant, and R is the distance from the major
axis to the field point (x,%, O). For purposes of
computation, R(Xx.$,0) is a coordinate function needed for

the mettlc. 2 2
z=————d’; = + ——-d'g + rR%ae?.
R B B

The computationally useful quantities R and ap determine the

daf

scale factors in it.
These coordinates have proved useful in calculations of
the magnetic field in a spherator (Pigure 2 i3 a typical
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example)., They can describe a true vacuum field, as well as
fields in the presence of currents, but axisymmetry is built
in. The coordinate gradients are orthogonal, but the metric
shows that tbey are not unitary.

The thiil curvilinear coordinate system vas introduced
by Hamada (1959). Its utility in analytic wvork has been
demonstrated, for example, by Greene and Johnson {1962), and
by Prieman (1970). It begins by parameterizing a (closed)
magnetic surface by the volume, V, contained within it,
Then, writing the fluxes the long way ¥ and the short way X
as functions of V, one chooses the scalars ¢ and { such that

B=VvVxy L¥'E +X'C] .,

vhere the primes indicate derivatives vith respect to v, If
ve also tequitegV~g£Xz§=l.the lines of constant § will
close on themselves the long way, and { will be periodic,
with period 1, the short wvay. Similarly, lines of constant
t will close on themselves the shcrt way, and { increases by
1, once around the long way, Observe that the basis vectors
are not in general orthogonal. The metric is
e } gldgidej,
L

vhere £l=v, 82 =¢, and 53=§ . Six scalars are needed to
relate df to coordinate displacements, since g" is a
symmetric tensor. These scalars are the dot products of
VEXVE, VEXVV and VVXVE, taken in  pairs. Por numerical
computations in these coordinates, it would be necessary to

tabulate these quantities at each mesh point.
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<4—— Magnetic field lines

EXTERNAL
WINDING

CENTER

PLASMA
CONDUCTOR

VACUUM MAGNETIC
VESSEL SURFACES

Figure ). Perspective view c¢f a spherator, showing ttke
variatior in pfpitch of representative magnetic field
lines.
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In return for the complexity of the metric, one obtains
a coordinate representation in which integrals and
derivatives are easily computed. Purthecmore, the magnetic
field lines, and the lires of the generating current, are
straight. This greatly simplifies calculations such as
magnetic line integrals. Pigure 3 shovs why straightening
the magnetic field lines can be a big help; it shovs several
field lines in a spherator geometry.

These are the three coordinate systemsﬂ They are
convenient, respectively, for simple calculations, for
problems vith axisymmetry, and for computations in a general
magnetic field. They have been presented in their toroidal
form for convenience. Each can obviously be specialized to
cylindrical geometry (R==), Spherator and Hamada
coordinates can be applied to multipoles, vith the
separatrix as a special case. Hamada coordinates can be
applied to open-ended or mirror geometries, vith v replaced

by a suitable surface label.
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III ALGEBRA

e will nov show hov fluid calculations are performed
in these coordinates, and hov to decide which is best suited
to a particular proolem. We will illustrate these points
through calculation of geometric factors in line, surface
and volume integrals, the acceleration terms in the momentum
equations, and the form of the conservation lavs,

Pirst let us see what is involved in the computation of
integrals. Physically, the quantities vhich are likely to
pe needed in the formulation of the equations or in the
diagnostics are magnetic line integrals, magnetic surface
integrals, and integrals of a volume bounded by magnetic
surfaces. MWagnetic line integrals occur in the evaluation
of equations like Ohm's lav,

E+iyxBenl -
the parallel component of which yields

B-¥¢=-nB]
in the electrostatic limit Es-!p. They are also obtained by
application of stokes' theorem to Maxwell's equations.

Magnetic surface integrals come from the divergence theorem,

and from formulations of conservation lavs; -1 O}
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conservation of charge,

gJ-dS:O.

In toroidal geometry such magnetic surface integrals are
important in calculating the time evolution of the system
(Vinsor, 1970; Bowers, this conference). Volume integrals
appear in averages, diagnostics, etc.

The cylindrical 1limit of Pfirsch coordinates is a
convenient and familiar starting point for comparison of
these expressions., The lihe, magnetic surface and volume

elements are written

df = e dr+ e_ rdf+ e d
s wT ey ~
dS = e rdfdz,
v ol

and
dT = drrd@ dz.

The effects of curvature are introduced through a single
parameter N=1-r cosf/R, the ratio of axial lengths d{=Ndz at
the field point (r,0,z) to the length at the magnetic axis

df=dz. Thus,

daf

:rdr+ Ecrde +:szz,
ds = errde Ndz ,
dT = drrdf Ndz .

in Pfirsch coordinates. In spherator coordinates, the
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magnetic line and volume integrals require the two

additional functions described before:
dae = 3x (dx/RBpH-:o (di/Bp) +:eRde i
ds = ) (R/Bp)di de ,
d_® (l/Bi)dx dad de.

The components in the line element are orthogonal. 1In

Hamada coordinates, the line element can be vwiitten

di= dVVEX VL +dE VEXIV+ ALYV XVE .

The particular choice of metric elements simplifies the

surface and volume elements:

ds = yvdg dg,
dr = dvdg dC .

Note that BE/BcsxfﬁW' is constant in these coordinates,

The simplest means of numerically performing an
integral is to set up a grid along coordinate lines,
evaluate the line, surface or volume elements for the cells
of the grid, and perform the appropriate sum, using the
trapezoidal rule for points on the mesh and the midpoint
rule for points displaced from it. 1In a coordinate system
suited to the problem at hand, this is likely to be quite
adeguate. Thus, only the metric coefficients indicated

above, and no additionzl veighting factors, are required.
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Any textbook on differential equations presents the
gradient, divergence and curl operators in coordinates other
than Cartesian. 2 quick glance at tkese expressions showus
that wmetric elements appear inside the derivatives in div
and curl, but not inside grad. This is because div and curl
operate on vectors, and grad opecates on scalars. The dyad
.y!'is quite complicated in curvilinear coordinates, and will
be discussed belov in connection with the acceleration
terms.

The difference approximation to differential operators
must be selected with numerical stability in mind, but
generally speaking, the simpler the better, The second
programming example below illustrates a “centered"
difference in spherical coordinates; the coordinate is highly
nonlinear, but the stability of the difference formulation
is unaffected by this,

If both integrals and derivatives appear in the
expression of the problem, it is very important that the
operators be compatible, j.=,,

[at-90e4,-4,
¢

1
and

5 dSoﬁ =S Zo.A_dT
D" D

should be identically satisfied in difference form.
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Integrals such as these are frequently derived from
conservation lavs, and it is good practice to insure that
these lavs are obeyed by the difference formulation of the
problem. §e shall say wmore about these considerations
shortly.

The programming of differential egquations in one of
these coordinate systems involves replacement of the
differential operatocs by suitable difference operators.
Hov great a task that vill be depends both on the form of
the operators and on the choice of the difference
approximations. The operators are presented in the next
paragraph, to indicate the amount of work that is required

to code ther,

The form of the diffe:ential operators in Pfirsch and
i spherator coordinate systems is readily calculated., 1In

Pfirsch coordinates,
s e 28 29 29
Vo= ort 29 Toe t 2k Noz

8rNA aNA 8A
r (2] z

.Y'.é= rNor L4 rN3¢@ i Noz °*

ONAE 8A
VXA=;1[8NA1.8_A£ +e.—o[8Ar.8NAz]+é[ _ r]
w - N | ro@ dz NL 2z or r or 8 J.

1 In spherator coordinates,

- 1 ] 5 1]
Y =exRBoox e Bpoe * tee
v-A= B PR/ + B i Y s
Sy~ p X p o R3O '
) 9A
UXA=e [B = --a:!. +e [m_a O_RE],,,G RBZ[ A’/BE_ x/RBP]
Y| ey p R® R3O | .&#| R3© "p 08X -0 plL X o 3
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In Hamada coordinates, ve are again in need of tensor

notation: 2A
i_B8 =) i
(Ve) -ag ’ V'A‘Eag. .
H 1
= b ki
(V)u\)i }eijk agj g A‘,

vhere derivatives of covariant quantities are indicated.

Here eijk is the usual antisymmetric tensor. The operators
k

involve derivatives of the q ‘, but the difference version

still requires only these six parameters tabulated on the

mesh,

The dyad Vv usvally appears only in the combination
wWy, and for time-independent coordinates ve can vcite this
as

v-Vv=§‘%v'V+ﬂXV.
i
The problem of calculating the acceleration is then reduced
to the differencing of the scalar components (discussed in
the section on convection) and the calculation oti_l_. I<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>